首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
《Composites Part A》2002,33(1):133-136
This paper presents thermal expansion data for cross-ply and woven copper matrix–carbon fibre composites (Cu–Cf MMCs) that were prepared by diffusion bonding. Thermal expansion was measured in two perpendicular in-plane directions of plate samples. For cross-ply samples (57 vol.%fibres) the mean coefficient of thermal expansion (CTE) between −20 and 300°C changed from approximately 6.5×10−6/°C to 3.5×10−6/°C during heating/cooling. The in-plane CTE increases with decreasing fibre content. Composites with woven arrangement of carbon fibres show a slightly higher CTE at elevated temperature.  相似文献   

2.
The influence of hot top design on feeder channel segregates (F-CS) and centerline shrinkage porosities (C-SP) were investigated both experimentally and numerically. Two 100-ton 30Cr2Ni4MoV steel ingots with different insulating hot tops were longitudinally sectioned. The experimental results showed few channel segregates but severe shrinkage porosities appeared in the ingot with poorly insulated hot top, while it was the opposite case after the improved hot topping practice. By employing the finite element numerical simulation, the critical condition for the formation of F-CS in 30Cr2Ni4MoV steel was verified to be R2.1G  1.0 × 10 5 °C mm1.1 s 2.1. Through coupling with the published C-SP criterion (GR 0.5  2.5 °C mm 1.5 s0.5), it was found out that the increase of hot-top height and preheating temperature would aggravate F-CS while alleviate C-SP contrarily. Hence, to comprehensively control those two defects, the optimum hot-top height and preheating temperature for 100-ton ingot were suggested to be 700 mm and 600 °C, respectively. Ultimately, the ratio of the solidification time for the whole ingot to the ingot body (tf/tb) was proposed as a novel criterion for hot top design. This practical criterion has been successfully utilized to optimize the hot top of a 5-ton steel ingot.  相似文献   

3.
Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10−6 to 6 × 10−6/K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al2Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.  相似文献   

4.
Li2O–Al2O3–SiO2 (LAS) glass–ceramics for low temperature co-fired ceramics (LTCC) application were prepared by melting method, and the effects of MgO on the sinterability, microstructure, dielectric property, thermal expansion coefficient (CTE) and mechanical character of this glass–ceramics have been studied. The X-ray diffraction images represent that the main phase is β-spodumene solid solutions. And some ZrO2 and CaMgSi2O6 phases in LAS glass–ceramics are detected. The LAS glass–ceramics without additive (MgO) sintered at 800° had the dielectric properties: dielectric constant (εr) of 5.3, dielectric loss (tanδ) of 2.97 × 10?3 at 1 MHz, CTE value of 1.06 × 10?6 K?1, bulk density of 2.17 g/cm3, and flexural strength of 73 MPa. 5.5 wt% MgO-added LAS glass–ceramic achieves densification at 800° exhibited excellent properties: low dielectric constant and loss (εr = 7.1, tanδ = 2.02 × 10?3 at 1 MHz), low CTE (2.89 × 10?6 K?1), bulk density = 2.65 g/cm3 as well as high flexural strength (145 MPa). The results indicate that the addition of MgO is helpful to improve the dielectric and mechanical properties. The formation of CaMgSi2O6 crystal phase with higher CTE leads to the increase of CTE value of LAS glass–ceramics due to the increasing MgO content, and the increase of CTE is favourable for matching with silicon (3.1 × 10?6 K?1). The prepared LAS glass–ceramics have the potential for LTCC application.  相似文献   

5.
The low-temperature co-fired ceramic (LTCC) composites containing quartz based on the eutectic system BaO–Al2O3–SiO2–B2O3 are fabricated at the sintering temperature below 980 °C. Preparation process and sintering mechanism were described and discussed, respectively. The results indicated that the addition of quartz to the eutectic system can availably improve dielectric properties of the LTCC composites. In addition, The LTCC composites with optimum compositions, which were obtained by the regulation of an Al2O3 content in the composite, can express excellent dielectric properties (permittivity: 5.94, 5.48; loss: 7 × 10−4, 5 × 10−4), considerable CTE values (11.7 ppm. °C−1, 10.6 ppm. °C−1) and good mechanical properties (128 MPa,133 MPa).  相似文献   

6.
The linear coefficient of thermal expansion (CTE) and the theoretical density are important for energetic materials. To obtain the CTE and theoretical density of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS), X-ray powder diffraction (XRD) together with Rietveld refinement was employed to estimate the dimension and density change at a crystal lattice level, in the range of temperature 30–240 °C. The CTE of a-, b-, c-axis and volume were obtained as 7.6719 × 10−5/°C, 6.8044 × 10−5/°C, 1.1192 × 10−5/°C and 16.725 × 10−5/°C, respectively. Also, the possible reasons for the expansion property of HNS have been discussed by comparing its structure with 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Based on the refined lattice parameters, the theoretical densities of HNS at various temperatures were obtained. By extrapolation of linear fitting the theoretical density of HNS at 20 °C was gotten as 1.7453 g/cm3. Furthermore, a good thermal resilience of HNS has also been observed when the temperature returned from 240 to 30 °C.  相似文献   

7.
《Materials Letters》2005,59(24-25):3014-3017
Ni–SiC metal matrix composites with two kinds of SiC content were prepared by electroforming in a nickel sulphamate bath. Tensile strength and microstructure of the composites before and after heat treatment were investigated. The maximum of tensile strength was obtained after heat treatment at 300 °C × 24 h. The values were 641 N/mm2 and 701 N/mm2 respectively. The complete reaction between nickel and SiC particles can produce shrinkage pores in the interface. The volume of shrinkage pores was equal to 8% of the volume of SiC particles in the composites. The interfacial reaction products were composed of Ni3Si and a little amount of Ni31Si12 after heat treatment at 600 °C × 24 h. The fracture evolution went though microcracks initiation, growth and coalescence. Cracking of the matrix, debonding of Ni–SiC interfaces and cracking of particles were three types of cracking modes for Ni–SiC composites.  相似文献   

8.
Temperature treatment of 0–3 type PZT/cement composites before polarization yielded high dielectric and piezoelectric properties in materials with 50% PZT inclusions by volume and 50% cement matrix. Specimens were treated at seven temperatures from 23 °C to 150 °C and then applied by a 1.5 kV/mm poling field. The dielectric loss of the composites reduces at higher pretreatment temperatures, shorting the trigger time. Temperature treatment increased the piezoelectric strain factor d33, the relative dielectric constant εr and the piezoelectric voltage factor g33 of PZT/cement composites, but did not affect significantly the electromechanical coupling coefficient Kt. Piezoelectric factors reach stable values after 70 days of aging, and samples that were not temperature pretreated reached stable values earlier. Specimens pretreated at 150 °C exhibit d33 = 106.3 pC/N and εr = 477 on the 70th aging day, almost two times greater than the composites without temperature treatment. The resonance frequency of the composites on the 70th day decreases with increasing temperature, with the exception of 150 °C. Temperature pretreatment can also improve the phase angle of the composites. In addition, the effect of curing time for PZT/cement composites is an important factor to dominate the feasibility of polarization.  相似文献   

9.
《Materials Letters》2007,61(11-12):2499-2501
A single crystal of Tb: KLu(WO4)2 with dimensions of 40 mm × 40 mm × 18 mm has been grown by the top-seeded solution growth (TSSG) method. The color of the crystal is brown. Absorption and fluorescence spectra were measured at room temperature. The measured specific heat is a little lower than that of Yb: KLW (0.365 J/g K) at 90 °C. The measured mean linear coefficients of thermal expansion are αa = 17.1643 × 10 6 K 1, αa = 14.0896 × 10 6 K 1, αb = 8.7938 × 10 6 K 1, αc = 23.1745 × 10 6 K 1, αc = 20.2866 × 10 6 K 1. The results indicate that the crystal has a large anisotropy. The refractive index was measured.  相似文献   

10.
The rate of reaction of the compacted powders of CuO-η-Al2O3 and ZnO-η-Al2O3 systems was measured in air at 800 to 900° C and the effect of the mixing procedure (dry and wet mixing) and compaction pressure (0 to 8.3×108 Pa) of reactant oxides on the fraction of reaction completed (α) was investigated. In the reaction of the CuO-η-Al2O3 system, the α-values obtained for the sample prepared by wet mixing in ethanol were higher than those for the sample prepared by dry mixing in air and were not influenced by the compaction pressure, whereas in the case of dry mixing they varied with the compaction pressure and had a maximum value at 2.1×108 Pa. On the other hand, in the reaction of the ZnO-η-Al2O3 system the α-values for the sample obtained by wet mixing were lower than the values obtained by dry mixing, in contrast to the results in CuO-η-Al2O3 system, and the α-values for the samples prepared by both dry and wet mixing were not influenced by the compaction pressure. The effect of mixing procedure and compaction pressure of reactant powders on the α-values was found to be explained on the basis of the aggregate size of CuO and ZnO dispersed in the matrix of η-Al2O3 fine powder.  相似文献   

11.
《Advanced Powder Technology》2020,31(11):4541-4551
In this study we synthesized LiFePO4/carbon/reduced graphene oxide (LFP/C/rGO) composite cathode materials using a method involving sol–gel processing, spray-drying, and calcination. To improve the electrochemical performance of LFP/C, we tested graphene oxides (GOs) of various morphologies as conductive additives, including pristine GO, three-dimensional GO, and hydrothermal porous GO (HTGO). Among our samples, the cathode material prepared through spray-drying with the addition of 1 wt% of HTGO (denoted SP-LFP/C/1%rHTGO) displayed the best electrochemical performance; its discharge capacities at 0.1C, 1C, 5C, and 10C were 160.5, 151.8, 138.8, and 130.3 mA h g−1, respectively. From measurements of its long-term cycling performance, the discharge capacity in the first cycle and the capacity retention after 30 cycles at 0.1C were 160.2 mA h g−1 and 99.6%, respectively; at 10C, these values were 132.2 mA h g−1 and 91.8%, respectively. The electronic conductivity of SP-LFP/C/1%rHTGO (6.58 × 10−5 S cm−1) was higher than that of the pristine LFP/C (9.24 × 10−6 S cm−1). The Li+ ion diffusivities (DLi+) of the SP-LFP/C/1%HTGO cathode, measured using AC impedance (3.91 × 10−13 cm2 s−1) and cyclic voltammetry (6.66 × 10−10 cm2 s−1 for discharge), were superior to those of the LFP/C cathode (9.31 × 10−15 cm2 s−1 and 1.79 × 10−10 cm2 s−1 for discharge, respectively). Galvanostatic intermittent titration revealed that the value of DLi+ was located in a reasonable range from 1 × 10−10 to 1 × 10−17 cm2 s−1; its value dropped to its lowest point when the state of charge was close to 50%. Thus, the use of spray-drying and the addition of conductive HTGO (having a 3D wrinkled morphology and interconnected pore structure) can enhance the electronic conductivity and Li+ ion diffusivity of LFP/C cathode materials, thereby improving the electrochemical performance significantly.  相似文献   

12.
Undoped n-type MgZnO films were deposited on c-plane sapphire substrates by molecular-beam epitaxy and subsequently annealed in O2 at different pressures. After annealing at 3.03 × 105 Pa, oxygen content in the annealed films show increases and the films transform into p-type conduction. However, the decreases of oxygen content and the increases of electron concentration were obtained while the films annealed at 1.01 × 105 Pa or 2.05 × 10−3 Pa. The changes in intensity of the emission peak located at 2.270 eV are similar to the changes of the oxygen content in the films annealed at different pressures. According to the defect levels and the relationship between photoluminescence spectra and annealing condition, it was suggested that this emission peak was related to interstitial oxygen (Oi). The obtained p-type conduction is attributed to that the Oi acceptor can compensate oxygen vacancy and interstitial zinc donor.  相似文献   

13.
Antiperovskite manganese nitride Mn3Cu0.6Ge0.4N was fabricated by spark plasma sintering (SPS) at different temperatures and its negative thermal expansion behavior was investigated. It is observed that the width of negative thermal expansion (NTE) operation-temperature window becomes broader when the sintering temperature decreases. Moreover, it is significantly larger than that of other Mn3CuN-based antiperovskite manganese nitrides prepared by solid-state reaction. More interestingly, the Mn3Cu0.6Ge0.4N sintered at 650 °C shows near zero thermal expansion (ZTE) behavior in the temperature range of 220–170 K. The average linear coefficient of thermal expansion (CTE) is estimated to be −0.9 × 106 K1. Magnetic measurement shows that the process of the magnetic transition becomes slow when the sintering temperature decreases. This antiperovskite manganese nitride Mn3Cu0.6Ge0.4N with ZTE behavior is much useful for applications in the fields of cryogenics and applied superconductivity.  相似文献   

14.
Aluminum matrix composites reinforced with diamond particles were consolidated by spark plasma sintering. Metalloid silicon was added (Al–Si/diamond composites) to investigate the effect. Silicon addition promotes the formation of molten metal during the sintering to facilitate the densification and enhance the interfacial bonding. Meanwhile, the alloying metal matrix precipitates the eutectic-Si on the diamond surfaces acting as the transitional part to protect the improved interface during the cooling stage. The improved interface and precipitating eutectic-Si phase are mutually responsible for the optimized properties of the composites. In this study, for the Al–Si/diamond composite with 55 vol.% diamonds of 75 μm diameter, the thermal conductivity increased from 200 to 412 Wm−1 K−1, and the coefficient of thermal expansion (CTE) decreased from 8.9 to 7.3 × 10−6 K−1, compared to the Al/diamond composites. Accordingly, the residual plastic strain was 0.10 × 10−3 during the first cycle and rapidly became negligible during the second. Additionally, the measured CTE of the Al–Si/diamond composites was more conform to the Schapery’s model.  相似文献   

15.
Orthorhombic Al2Mo3O12 was investigated as a model anisotropic phase to understand the influence of powder preparation routes and bulk microstructure (mean grain size) on the bulk coefficient of thermal expansion (CTE) and to compare it to the intrinsic CTE of powder samples. A co-precipitation route was used for the synthesis of pure single-phase nanopowders, while a polyvinyl alcohol-assisted sol–gel method was utilized for the synthesis of micron-sized powders. Sintered samples prepared from both powders exhibited different microstructures in terms of mean crystal sizes and porosity. Bulk samples obtained from nanopowders were highly porous and contained crystals of approximately 100-nm diameter, while the bulk pieces produced from the micron-sized powders were denser, contained crystals larger than 5 μm, and showed occasional intergranular and transgranular microcracks. Such different microstructures hugely impact the bulk CTE: the nanometric sample possesses a bulk CTE (0.9 × 10?6 °C?1, from 200 to 700 °C) closer to the instrinsic CTE (2.4 × 10?6 °C?1) than for the micrometric sample, which showed a negative CTE (?2.2 × 10?6 °C?1) from 200 to 620 °C, and an even more negative CTE above 620 °C (?35 × 10?6 °C?1). A finite element analysis showed that the local maximum thermal tensile stresses could be as high as 220 MPa when simulating a temperature drop of 700 °C as an example of thermal treatment following sintering. This tensile stress is expected to exceed the tensile strength of Al2Mo3O12, explaining the origin of microcracks in bulk samples prepared from the micron-sized powders. The thermal behavior of the microcracks leads to differences between the intrinsic and bulk thermal expansion; we show experimentally that such differences can be reduced by nanostructuring.  相似文献   

16.
In this paper, the structural and dielectric properties of BNO (BiNbO4) was investigated as a function of the external RF frequency and temperature. The BNO Ceramics, prepared by the conventional mixed oxide method and doped with 3, 5 and 10 wt. % Bi2O3–PbO were sintered at 1,025 °C for 3 h. The X-ray diffraction patterns of the samples sintered, shown the presence of the triclinic phase (β-BNO). In the measurements obtained at room temperature (25 °C) was observed that the largest values of dielectric permittivity (ε r ) at frequency 100 kHz, were for the samples: BNO5Bi (5 wt. % Bi2O3) and BNO5Pb (5 wt. % PbO) with values ε r ~ 59.54 and ε r ~ 78.44, respectively. The smaller values of loss tangent (tan δ) were for the samples: BNO5Bi and BNO3Pb (3 wt. % PbO) with values tan δ ~ 5.71 × 10−4 and tan δ ~ 2.19 × 10−4, respectively at frequency 33.69 MHz. The analysis as a function of temperature of the dielectric properties of the samples, obtained at frequency 100 kHz, showed that the larger value of the relative dielectric permittivity was about ε r ~ 76.4 at temperature 200 °C for BNO5Pb sample, and the value smaller observed of dielectric loss was for BNO3Bi sample at temperature 80 °C, with about tan δ ~ 5.4 × 10−3. The Temperature Coefficient of Capacitance (TCC) values at 1 MHz frequency, present a change of the signal from BNO (−55.06 ppm/°C) to the sample doped of Bi: BNO3Bi (+86.74 ppm/°C) and to the sample doped of Pb: BNO3Pb (+208.87 ppm/°C). One can conclude that starting from the BNO one can increase the doping level of Bi or Pb and find a concentration where one have TCC = 0 ppm/°C, which is important for temperature stable materials applications like high frequency capacitors. The activation energy (H) obtained in the process is approximately 0.55 eV for BNO sample and increase with the doping level. These samples will be studied seeking the development ceramic capacitors for applications in radio frequency devices.  相似文献   

17.
《Materials Research Bulletin》2006,41(7):1378-1384
The exploration of the Li–Ti–Mg–O system, using both sol–gel technique and solid state reaction method, allowed a new phase, Li2MgTiO4, with disordered rock salt structure (a = 4.159 Å) to be synthesized. The latter is shown to be a good type I dielectric material, with a relative constant of 15 at high frequency and low dielectric loss (tanδ < 10−3) over the temperature range −60 to 160 °C. It is also observed that the sintering temperature of this phase is strongly lowered by adopting the sol–gel technique compared to solid state reaction (1150 °C instead of 1300 °C). Finally we show that this phase exhibits cationic conductivity above 400 °C (σ600 °C = 9 × 10−5 S cm−1).  相似文献   

18.
2D Dion–Jacobson (DJ) phase hybrid perovskites have shown great promise in the photoelectronic field owing to their outstanding optoelectronic performance and superior structural rigidity. However, DJ phase lead-free double perovskites are still a virgin land with direct X-ray detection. Herein, we have designed and synthesized a new DJ phase lead-free layered double perovskite of (HIS)2AgSbBr8 ( 1 , HIS2+ = histammonium). Centimeter-sized (18 × 10 × 5 mm3) single crystals of 1 are successfully grown via the temperature cooling technique, exhibiting remarkable semiconductive characteristics such as a high resistivity (2.2 × 1011 Ω cm), a low trap state density (3.56 × 1010 cm−3), and a large mobility-lifetime product (1.72 × 10−3 cm2 V−1). Strikingly, its single-crystal-based X-ray detector shows a high sensitivity of 223 µC Gy−1air cm−2 under 33.3 V mm−1, a low detection limit (84.2 nGyairs−1) and superior anti-fatigue. As far as we know, we firstly demonstrates the potential of 2D DJ phase lead-free hybrid double perovskite in X-ray detection, showing excellent photoelectric response and operational stability. This work will pave a promising pathway to the innovative application of hybrid perovskites for eco-friendly and efficient X-ray detection.  相似文献   

19.
TiN coating on Y-α-sialon was accomplished by depositing TiO2 on their particle surfaces through controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 and subsequent nitridation with NH3 gas at 1000 °C. TiN particles covering Y-α-sialon were about 20 nm in size. Spark plasma sintering (SPS) of TiN/Y-α-sialon particles produced composite ceramics with continuous TiN networks at 1400 °C, but with TiN grains isolated in elongated β-sialon grains at 1600 °C. The relative density and Vickers hardness of TiN/sialon ceramics SPSed at 1400–1600 °C containing 25 vol.% TiN were measured. The electrical resistivity was in a wide range of 10−4 to 100 Ω cm for the ceramics sintered at 1400 °C, but lowered to the order of magnitude of 10−1 and 105 Ω cm at higher temperatures ≥1500 °C. It was found that the complete transition to β-sialon increased the resistivity to 103 to 105 Ω cm, due to breaking up continuous TiN layers by elongated β-sialon grains.  相似文献   

20.
Experimental investigation is performed to study tensile properties, damage initiation and development in stitched carbon/epoxy composites subjected to tensile loading. T800SC-24kf dry preforms with tow orientation of [+45/90/−45/02/+45/902/−45/0]s are stitched using 200 denier Vectran® thread. Modified-lock stitch pattern is adopted, and stitch density is varied, viz. moderate density (stitched 6 × 6: stitch density = 2.8 cm−2) and high density (stitched 3 × 3: stitch density = 11.1 cm−2). The stitched preforms are then infiltrated by epoxy XNR/H6813 using resin transfer molding process. Tensile test is conducted to obtain in-plane mechanical properties (tensile strength, failure strain, tensile modulus and Poisson’s ratio). Effect of stitch density on the mechanical properties is assessed, and it is found that stitched 3 × 3 modestly improves the tensile strength by 10.4%, while stitched 6 × 6 reduces the strength by only 1.4%. In stitched 3 × 3 cases, the strength increase is mainly due to an effective impediment of edge-delamination. Tensile stiffness and Poisson’s ratio of carbon/epoxy are slightly reduced by stitching. Fiber misalignment in in-plane and out-of-plane directions is responsible for stiffness reduction, whilst reduction of Poisson’s ratio is probably caused by the orthogonal binding effect of modified-lock stitch architecture. Damage mechanisms in stitched and unstitched composites are studied using acoustic emission testing and interrupted test coupled with X-ray radiography and optical microscopy. The detailed damage observation reveals that stitch thread promotes early formation of transverse and oblique cracks. These cracks rapidly develop, and higher density of cracks ensues in stitched composites. Although this behavior triggers early formation of delamination, stitched 3 × 3 effectively impedes the growth the delamination. In contrast, stitched 6 × 6 is ineffective in suppressing the delamination yet the cracks are vast in this specimen. One of the plausible reasons of the rapid development of cracks in stitched composites is fiber compaction effect whereby fibers are compacted and the gap among fibers is reduced. The verification of compaction effect is done experimentally by performing burn-off test to measure the local fiber volume fraction. It is confirmed that fiber compaction indeed occurs as indicated by higher local fiber volume fraction between stitch lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号