首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-atom nickel catalysts hold great promise in the application of electrocatalytic carbon dioxide reduction reaction (CO2RR), but suffer from the sluggish kinetics and serious competitive hydrogen evolution reaction (HER), which restrict their overall catalytic performance. Herein, we report a boron-bridging strategy to manipulate the atomic coordination structure and construct a single-atom nickel catalyst with an active center of NiN4B2 to realize excellent CO2RR performance. Density functional theory analysis suggests that the unique NiN4B2 sites with tuned electronic structure facilitate the adsorption of CO2 molecules and effectively suppress the HER pathway by increasing corresponding energy barrier. As-obtained Ni-SAs@BNC catalyst with a NiN4B2 structure exhibits significantly enhanced catalytic activity and selectivity than commonly used single-atom nickel catalysts with a NiN4 structure, especially at high applied potentials. A high current density of up to (214 ± 21) mA cm−2 at a potential of −1.2 V with a high CO Faraday efficiency (FECO) of ∼97% was achieved in a flow cell. This work inspires new insights into the rational design of atomic coordination structure of single-atom catalysts with tunable electronic structure for superior electrocatalytic activities.  相似文献   

2.
Direct and selective oxidation of benzene to phenol is a long-term goal in industry. Although great efforts have been made in homogenous catalysis, it still remains a huge challenge to drive this reaction via heterogeneous catalysts under mild conditions. Herein, a single-atom Au loaded MgAl-layered double hydroxide (Au1-MgAl-LDH) with a well-defined structure, in which the Au single atoms are located on the top of Al3+ with Au-O4 coordination as revealed by extended x–ray–absorption fine–structure (EXAFS)and density–functional theory (DFT)calculation is reported. The photocatalytic results prove the Au1-MgAl-LDH is capable of driving benzene oxidation reaction with O2 in water, and exhibits a high selectivity of 99% for phenol. While contrast experiment shows a ≈99% selectivity for aliphatic acid with Au nanoparticle loaded MgAl-LDH (Au-NP-MgAl-LDH). Detailed characterizations confirm that the origin of the selectivity difference can be attributed to the profound adsorption behavior of substrate benzene with Au single atoms and nanoparticles. For Au1-MgAl-LDH, single Au-C bond is formed in benzene activation and result in the production of phenol. While for Au-NP-MgAl-LDH, multiple Au C bonds are generated in benzene activation, leading to the crack of C C bond.  相似文献   

3.
Here, the photocatalytic CO2 reduction reaction (CO2RR) with the selectivity of carbon products up to 100% is realized by completely suppressing the H2 evolution reaction under visible light (λ > 420 nm) irradiation. To target this, plasmonic Au/CdSe dumbbell nanorods enhance light harvesting and produce a plasmon‐enhanced charge‐rich environment; peripheral Cu2O provides rich active sites for CO2 reduction and suppresses the hydrogen generation to improve the selectivity of carbon products. The middle CdSe serves as a bridge to transfer the photocharges. Based on synthesizing these Au/CdSe–Cu2O hierarchical nanostructures (HNSs), efficient photoinduced electron/hole (e?/h+) separation and 100% of CO selectivity can be realized. Also, the 2e?/2H+ products of CO can be further enhanced and hydrogenated to effectively complete 8e?/8H+ reduction of CO2 to methane (CH4), where a sufficient CO concentration and the proton provided by H2O reduction are indispensable. Under the optimum condition, the Au/CdSe–Cu2O HNSs display high photocatalytic activity and stability, where the stable gas generation rates are 254 and 123 µmol g?1 h?1 for CO and CH4 over a 60 h period.  相似文献   

4.
The precise self-assembly of building blocks at atomic level provides the opportunity to achieve clusters with advanced catalytic properties. However, most of the current self-assembled materials are fabricated by 1/2D assembly of blocks. High dimensional (that is, 3D) assembly is widely believed to improve the performance of cluster. Herein, the effect of 3D assembly on the activity for electrocatalytic CO2 reduction reaction (CO2RR) is investigated by using a range of clusters (Au8Ag55, Au8Ag57, Au12Ag60) based on 3D assembly of M13 unit as models. Although three clusters have almost the same sizes and geometric structures, Au8Ag55 exhibits the best CO2RR performance due to the strong CO2 adsorption capacity and effective inhibition of H2 evolution competition reaction. The deep insight into the superior activity of Au8Ag55 is the unique electronic structure attributed to the charge segregation. This study not only demonstrates that the assembly mode greatly affects the catalytic activity, but also offers an idea for rational designing and precisely constructing catalysts with controllable activities.  相似文献   

5.
Limited comprehension of the reaction mechanism has hindered the development of catalysts for CO2 reduction reactions (CO2RR). Here, the bimetallic AgCu nanocatalyst platform is employed to understand the effect of the electronic structure of catalysts on the selectivity and activity for CO2 electroreduction to CO. The atomic arrangement and electronic state structure vary with the atomic ratio of Ag and Cu, enabling tunable d-band centers to optimize the binding strength of key intermediates. Density functional theory calculations confirm that the variation of Cu content greatly affects the free energy of *COOH, *CO (intermediate of CO), and *H (intermediates of H2), which leads to the change of the rate-determining step. Specifically, Ag96Cu4 reduces the free energy of the formation of *COOH while maintaining a relatively high theoretical overpotential for hydrogen evolution reaction(HER), thus achieving the best CO selectivity. While Ag70Cu30 shows relatively low formation energy of both *COOH and *H, the compromised thermodynamic barrier and product selectivity allows Ag70Cu30 the best CO partial current density. This study realizes the regulation of the selectivity and activity of electrocatalytic CO2 to CO, which provides a promising way to improve the intrinsic performance of CO2RR on bimetallic AgCu.  相似文献   

6.
Photocatalytic CO2 conversion into solar fuels is a promising technology to alleviate CO2 emissions and energy crises. The development of core-shell structured photocatalysts brings many benefits to the photocatalytic CO2 reduction process, such as high conversion efficiency, sufficient product selectivity, and endurable catalyst stability. Core-shell nanostructured materials with excellent physicochemical features take an irreplaceable position in the field of photocatalytic CO2 reduction. In this review, the recent development of core-shell materials applied for photocatalytic reduction of CO2 is introduced. First, the basic principle of photocatalytic CO2 reduction is introduced. In detail, the classification and synthesis techniques of core-shell catalysts are discussed. Furthermore, it is also emphasized that the excellent properties of the core-shell structure can greatly improve the activity, selectivity, and stability in the process of photocatalytic CO2 reduction. Hopefully, this paper can provide a favorable reference for the preparation of efficient photocatalysts for CO2 reduction.  相似文献   

7.
Optimizing catalysts for competitive photocatalytic reactions demand individually tailored band structure as well as intertwined interactions of light absorption, reaction activity, mass, and charge transport.  Here, a nanoparticulate host–guest structure is rationally designed that can exclusively fulfil and ideally control the aforestated uncompromising requisites for catalytic reactions. The all-inclusive model catalyst consists of porous Co3O4 host and ZnxCd1-xS guest with controllable physicochemical properties enabled by self-assembled hybrid structure and continuously amenable band gap. The effective porous topology nanoassembly, both at the exterior and the interior pores of a porous metal–organic framework (MOF), maximizes spatially immobilized semiconductor nanoparticles toward high utilization of particulate heterojunctions for vital charge and reactant transfer. In conjunction, the zinc constituent band engineering is found to regulate the light/molecules absorption, band structure, and specific reaction intermediates energy to attain high photocatalytic CO2 reduction selectivity. The optimal catalyst exhibits a H2-generation rate up to 6720 µmol g−1 h−1 and a CO production rate of 19.3 µmol g−1 h−1. These findings provide insight into the design of discrete host–guest MOF-semiconductor hybrid system with readily modulated band structures and well-constructed heterojunctions for selective solar-to-chemical conversion.  相似文献   

8.
Recent studies have found that the existence of oxygen around the active sites may be essential for efficient electrochemical CO2-to-CO conversion. Hence, this work proposes the modulation of oxygen coordination and investigates the as-induced catalytic behavior in CO2RR. It designs and synthesizes conjugated phthalocyanine frameworks catalysts (CPF-Co) with abundant CoN4 centers as an active source, and subsequently modifies the electronic structure of CPF-Co by introducing graphene oxide (GO) with oxygen-rich functional groups. A systematic study reveals that the axial coordination between oxygen and the catalytic sites could form an optimized O-CoN4 structure to break the electron distribution symmetry of Co, thus reducing the energy barrier to the activation of CO2 to COOH*. Meanwhile, by adjusting the content of oxygen, the proper supports can also facilitate the charge transfer efficiency between the matrix layer and the catalytic sites. The optimized CPF-Co@LGO exhibits a high TOF value (2.81 s−1), CO selectivity (97.6%) as well as stability (24 h) at 21 mA cm−2 current density. This work reveals the modulation of oxygen during CO2RR and provides a novel strategy for the design of efficient electrocatalysts, which may inspire new exploration and principles for CO2RR.  相似文献   

9.
The realization of solar-light-driven CO2 reduction reactions (CO2 RR) is essential for the commercial development of renewable energy modules and the reduction of global CO2 emissions. Combining experimental measurements and theoretical calculations, to introduce boron dopants and nitrogen defects in graphitic carbon nitride (g-C3N4), sodium borohydride is simply calcined with the mixture of g-C3N4 (CN), followed by the introduction of ultrathin Co phthalocyanine through phosphate groups. By strengthening H-bonding interactions, the resultant CoPc/P-BNDCN nanocomposite showed excellent photocatalytic CO2 reduction activity, releasing 197.76 and 130.32 µmol h−1 g−1 CO and CH4, respectively, and conveying an unprecedented 10-26-time improvement under visible-light irradiation. The substantial tuning is performed towards the conduction and valance band locations by B-dopants and N-defects to modulate the band structure for significantly accelerated CO2 RR. Through the use of ultrathin metal phthalocyanine assemblies that have a lot of single-atom sites, this work demonstrates a sustainable approach for achieving effective photocatalytic CO2 activation. More importantly, the excellent photoactivity is attributed to the fast charge separation via Z-scheme transfer mechanism formed by the universally facile strategy of dimension-matched ultrathin (≈4 nm) metal phthalocyanine-assisted nanocomposites.  相似文献   

10.
The CO2 reduction reaction (CO2RR) driven by renewable electricity represents a promising strategy toward alleviating the energy shortage and environmental crisis facing humankind. Cu species, as one type of versatile electrocatalyst for the CO2RR, attract tremendous research interest. However, for C2 products, ethanol formation is commonly less favored over Cu electrocatalysts. Herein, AuCu alloy nanoparticle embedded Cu submicrocone arrays (AuCu/Cu‐SCA) are constructed as an active, selective, and robust electrocatalyst for the CO2RR. Enhanced selectivity for EtOH is gained, whose Faradaic efficiency (FE) reaches 29 ± 4%, while ethylene formation is relatively inhibited (16 ± 4%) in KHCO3 aqueous solution. The ratio between partial current densities of EtOH and C2H4 (jEtOH/jC2H4) can be tuned in the range from 0.15 ± 0.27 to 1.81 ± 0.55 by varying the Au content of the electrocatalysts. The combined experimental and theoretical calculation results identify the importance of Au in modifying binding energies of key intermediates, such as CH2CHO*, CH3CHO*, and CH3CH2O*, which consequently modify the activity and selectivity (jEtOH/jC2H4) for the CO2RR. Moreover, AuCu/Cu‐SCA also shows high durability with both the current density and FEEtOH being largely maintained for 24 h electrocatalysis.  相似文献   

11.
Tan  Sha  Tackett  Brian M.  He  Qun  Lee  Ji Hoon  Chen  Jingguang G.  Wong  Stanislaus S. 《Nano Research》2020,13(5):1434-1443

We have sought to improve the electrocatalytic performance of tungsten nitride through synthetic control over chemical composition and morphology. In particular, we have generated a thermodynamically unstable but catalytically promising nitrogen-rich phase of tungsten via a hydrothermal generation of a tungsten oxide intermediate and subsequent annealing in ammonia. The net product consisted of three-dimensional (3D) micron-scale flower-like motifs of W2N3; this architecture not only evinced high structural stability but also incorporated the favorable properties of constituent two-dimensional nanosheets. From a performance perspective, as-prepared 3D W2N3 demonstrated promising hydrogen evolution reaction (HER) activities, especially in an acidic environment with a measured overpotential value of −101 mV at a current density of 10 mA/cm2. To further enhance the electrocatalytic activity, small amounts of precious metal nanoparticles (such as Pt and Au), consisting of variable sizes, were uniformly deposited onto the underlying 3D W2N3 motifs using a facile direct deposition method; these composites were applied towards the CO2 reduction reaction (CO2RR). A highlight of this series of experiments was that Au/W2N3 composites were found to be a much more active HER (as opposed to either a CO2RR or a methanol oxidation reaction (MOR)) catalyst.

  相似文献   

12.
Converting CO2 to clean-burning fuel such as natural gas (CH4) with high activity and selectivity remains to be a grand challenge due to slow kinetics of multiple electron transfer processes and competitive hydrogen evolution reaction (HER). Herein, the fabrication of surfactants (C11H23COONa, C12H25SO4Na, C16H33SO4Na) intercalated NiAl-layered double hydroxides (NiAl-LDH) is reported, resulting in the formation of LDH-S1 (S1 = C11H23COO), LDH-S2 (S2 = C12H25SO4) and LDH-S3 (S3 = C16H33SO4) with curved morphology. Compared with NiAl-LDH with a 1.53% selectivity of CH4, LDH-S2 shows higher selectivity of CH4 (83.07%) and lower activity of HER (3.84%) in CO2 photoreduction reaction (CO2PR). Detailed characterizations and DFT calculation indicates that the inherent lattice strain in LDH-S2 leads to the structural distortion with the presence of VNi/Al defects and compressed M O M bonds, and thereby reduces the overall energy barrier of CO2 to CH4. Moreover, the lower oxidation states of Ni in LDH-S2 enhances the adsorption of intermediates such as OCOH* and *CO, promoting the hydrogenation of CO to CH4. Therefore, the coupling effect of both lattice strain and electronic structure of the LDH-S2 significantly improves the activity and selectivity for CO2PR.  相似文献   

13.
《Advanced Powder Technology》2020,31(6):2505-2512
Artificial photosynthesis has attracted a lot of attention because it can tackle both global environmental problems and energy crisis. In this paper, SnS2 with different morphologies were synthesized to study their activity and selectivity of photocatalytic reduction of carbon dioxide (CO2). The size of tablet-like SnS2 is around 80–120 nm while the flower-like SnS2 is composed of nanosheets with a thickness of 10 nm. The reduction products of the as-obtained samples are both CO and CH4. The flower-like SnS2 sample processes more efficacious separation of photogenerated carriers compared to tablet-like SnS2 and shows higher photocatalytic reduction efficiency with CH4 yield of 97.5 μmol g−1, which is approximately 5.7 times higher than that of tablet-like SnS2, while the tablet-like SnS2 shows high selectivity (79%) for CO production. The results reveal that the morphology plays an important role in the activity and selectivity of photocatalytic reduction of CO2 over SnS2.  相似文献   

14.
Nitrate is a reasonable alternative instead of nitrogen for ammonia production due to the low bond energy, large water-solubility, and high chemical polarity for good absorption. Nitrate electroreduction reaction (NO3RR) is an effective and green strategy for both nitrate treatment and ammonia production. As an electrochemical reaction, the NO3RR requires an efficient electrocatalyst for achieving high activity and selectivity. Inspired by the enhancement effect of heterostructure on electrocatalysis, Au nanowires decorated ultrathin Co3O4 nanosheets (Co3O4-NS/Au-NWs) nanohybrids are proposed for improving the efficiency of nitrate-to-ammonia electroreduction. Theoretical calculation reveals that Au heteroatoms can effectively adjust the electron structure of Co active centers and reduce the energy barrier of the determining step (*NO → *NOH) during NO3RR. As the result, the Co3O4-NS/Au-NWs nanohybrids achieve an outstanding catalytic performance with high yield rate (2.661 mg h−1 mgcat−1) toward nitrate-to-ammonia. Importantly, the Co3O4-NS/Au-NWs nanohybrids show an obviously plasmon-promoted activity for NO3RR due to the localized surface plasmon resonance (LSPR) property of Au-NWs, which can achieve an enhanced NH3 yield rate of 4.045 mg h−1 mgcat−1. This study reveals the structure–activity relationship of heterostructure and LSPR-promotion effect toward NO3RR, which provide an efficient nitrate-to-ammonia reduction with high efficiency.  相似文献   

15.
It is a substantial challenge to construct electrocatalysts with high activity, good selectivity, and long-term stability for electrocatalytic reduction of carbon dioxide to formic acid. Herein, bismuth and indium species are innovatively integrated into a uniform heterogeneous spherical structure by a neoteric quasi-microemulsion method, and a novel C@In2O3@Bi50 core-shell structure is constructed through a subsequent one-step phase separation strategy due to melting point difference and Kirkendall effect with the nano-limiting effect of the carbon structure. This core-shell C@In2O3@Bi50 catalyst can selectively reduce CO2 to formate with high selectivity (≈90% faradaic efficiency), large partial current density (24.53 mA cm−2 at −1.36 V), and long-term stability (up to 14.5 h), superior to most of the Bi-based catalysts. The hybrid Bi/In2O3 interfaces of core-shell C@In2O3@Bi will stabilize the key intermediate HCOO* and suppress CO poisoning, benefiting the CO2RR selectivity and stability, while the internal cavity of core-shell structure will improve the reaction kinetics because of the large specific surface area and the enhancement of ion shuttle and electron transfer. Furthermore, the nano-limited domain effect of outmost carbon prevent active components from oxidation and agglomeration, helpful for stabilizing the catalyst. This work offers valuable insights into core-shell structure engineering to promote practical CO2 conversion technology.  相似文献   

16.
Metal single-atom catalysts are promising in electrochemical CO2 reduction reaction (CO2RR). The pores and cavities of the supports can promote the exposure of active sites and mass transfer of reactants, hence improve their performance. Here, iron oxalate is added to ZIF-8 and subsequently form hollow carbon nanocages during calcination. The formation mechanism of the hollow structure is studied in depth by controlling variables during synthesis. Kirkendall effect is the main reason for the formation of hollow porous carbon nanocages. The hollow porous carbon nanocages with Fe single atoms exhibit better CO2RR activity and CO selectivity. The diffusion of CO2 facilitated by the mesoporous structure of carbon nanocage results in their superior activity and selectivity. This work has raised an effective strategy for the synthesis of hollow carbon nanomaterials, and provides a feasible pathway for the rational design of electrocatalysts for small molecule activation.  相似文献   

17.
Photocatalytic CO2 conversion into value-added chemicals is a promising route but remains challenging due to poor product selectivity. Covalent organic frameworks (COFs) as an emerging class of porous materials are considered as promising candidates for photocatalysis. Incorporating metallic sites into COF is a successful strategy to realize high photocatalytic activities. Herein, 2,2′-bipyridine-based COF bearing non-noble single Cu sites is fabricated by chelating coordination of dipyridyl units for photocatalytic CO2 reduction. The coordinated single Cu sites not only significantly enhance light harvesting and accelerate electron–hole separation but also provide adsorption and activation sites for CO2 molecules. As a proof of concept, the Cu-Bpy-COF as a representative catalyst exhibits superior photocatalytic activity for reducing CO2 to CO and CH4 without photosensitizer, and impressively, the product selectivity of CO and CH4 can be readily modulated only by changing reaction media. Experimental and theoretical results reveal the crucial role of single Cu sites in promoting photoinduced charge separation and solvent effect in regulating product selectivity, which provides an important sight onto the design of COF photocatalysts for selective CO2 photoreduction.  相似文献   

18.
Manipulating the in‐plane defects of metal–nitrogen–carbon catalysts to regulate the electroreduction reaction of CO2 (CO2RR) remains a challenging task. Here, it is demonstrated that the activity of the intrinsic carbon defects can be dramatically improved through coupling with single‐atom Fe–N4 sites. The resulting catalyst delivers a maximum CO Faradaic efficiency of 90% and a CO partial current density of 33 mA cm?2 in 0.1 m KHCO3. The remarkable enhancements are maintained in concentrated electrolyte, endowing a rechargeable Zn–CO2 battery with a high CO selectivity of 86.5% at 5 mA cm?2. Further analysis suggests that the intrinsic defect is the active sites for CO2RR, instead of the Fe–N4 center. Density functional theory calculations reveal that the Fe–N4 coupled intrinsic defect exhibits a reduced energy barrier for CO2RR and suppresses the hydrogen evolution activity. The high intrinsic activity, coupled with fast electron‐transfer capability and abundant exposed active sites, induces excellent electrocatalytic performance.  相似文献   

19.
Electrochemical CO2 reduction reaction (CO2RR) is a promising approach to convert CO2 to carbon-neutral fuels using external electric powers. Here, the Bi2S3-Bi2O3 nanosheets possessing substantial interface being exposed between the connection of Bi2S3 and Bi2O3 are prepared and subsequently demonstrate to improve CO2RR performance. The electrocatalyst shows formate Faradaic efficiency (FE) of over 90% in a wide potential window. A high partial current density of about 200 mA cm?2 at ?1.1 V and an ultralow onset potential with formate FE of 90% are achieved in a flow cell. The excellent electrocatalytic activity is attributed to the fast-interfacial charge transfer induced by the electronic interaction at the interface, the increased number of active sites, and the improved CO2 adsorption ability. These collectively contribute to the faster reaction kinetics and improved selectivity and consequently, guarantee the superb CO2RR performance. This study provides an appealing strategy for the rational design of electrocatalysts to enhance catalytic performance by improving the charge transfer ability through constructing a functional heterostructure, which enables interface engineering toward more efficient CO2RR.  相似文献   

20.
Developing highly active and selective electrocatalysts for electrochemical reduction of CO2 can reduce environmental pollution and mitigation of greenhouse gas emission. Owing to maximal atomic utilization, the atomically dispersed catalysts are broadly adopted in CO2 reduction reaction (CO2RR). Dual-atom catalysts (DACs), with more flexible active sites, distinct electronic structures, and synergetic interatomic interactions compared to single-atom catalysts (SACs), may have great potential to enhance catalytic performance. Nevertheless, most of the existing electrocatalysts have low activity and selectivity due to their high energy barrier. Herein, 15 electrocatalysts are explored with noble metallic (Cu, Ag, and Au) active sites embedded in metal–organic hybrids (MOHs) for high-performance CO2RR and studied the relationship between SACs and DACs by first-principles calculation. The results indicated that the DACs have excellent electrocatalytic performance, and the moderate interaction between the single- and dual-atomic center can improve catalytic activity in CO2RR. Four among the 15 catalysts, including (CuAu), (CuCu), Cu(CuCu), and Cu(CuAu) MOHs inherited a capability of suppressing the competitive hydrogen evolution reaction with favorable CO overpotential. This work not only reveals outstanding candidates for MOHs-based dual-atom CO2RR electrocatalysts but also provides new theoretical insights into rationally designing 2D metallic electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号