首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to the World Health Organization, breast cancer is the most common cancer in women worldwide, becoming one of the most fatal types of cancer. Mammography image analysis is still the most effective imaging technology for breast cancer diagnosis, which is based on texture and shape analysis of mammary lesions. The GrowCut algorithm is a general-purpose segmentation method based on cellular automata, able to perform relatively accurate segmentation through the adequate selection of internal and external seed points. In this work we propose an adaptive semi-supervised version of the GrowCut algorithm, based on the modification of the automaton evolution rule by adding a Gaussian fuzzy membership function in order to model non-defined borders. In our proposal, manual selection of seed points of the suspicious lesion is changed by a semiautomatic stage, where just the internal points are selected by using a differential evolution algorithm. We evaluated our proposal using 57 lesion images obtained from MiniMIAS database. Results were compared with the semi-supervised state-of-the-art approaches BEMD, BMCS, Wavelet Analysis, LBI, Topographic Approach and MCW. Results show that our method achieves better results for circumscribed, spiculated lesions and ill-defined lesions, considering the similarity between segmentation results and ground-truth images.  相似文献   

2.
目的 肾脏图像分割对于肾脏疾病的诊断有着重要意义,临床上通过测量肾皮质的体积和厚度可判断肾脏是否有肿瘤、慢性动脉硬化性肾病和肾移植急性排斥反应等。现有的肾脏分割算法大多针对一种模态,且只能分割出肾脏整体。本文提出一种基于全卷积网络和GrowCut的肾皮质自动分割算法,用于多模态肾脏图像分割。方法 首先用广义霍夫变换对肾脏进行检测,提取出感兴趣区域,通过数据增强扩充带标签数据;然后用VGG-16预训练模型进行迁移学习,构建适用于肾皮质分割的全卷积网络,设置网络训练参数,使用扩充数据训练网络。最后用全卷积网络分割图像,提取最后一层卷积层的特征图得到种子点标记,结合肾脏图像的先验知识纠正错误种子点,将该标记图作为GrowCut初始种子点可实现肾皮质准确分割。结果 实验数据为30组临床CT和MRI图像,其中一组有标记的CT图像用于训练网络并测试算法分割准确性,该文算法分割准确率IU(region intersection over union)和DSC(Dice similarity coefficient)分别达到91.06%±2.34%和91.79%±2.39%。与全卷积网络FCN-32s相比,本文提出的网络参数减少,准确率更高,可实现肾皮质分割。GrowCut算法考虑像素间的邻域信息,与全卷积网络结合可进一步将分割准确率提高3%。结论 该方法可准确分割多模态肾脏图像,包括正常和变异肾脏的图像,说明该方法优于主流方法,能够为临床诊断提供可靠依据。  相似文献   

3.
传统区域生长算法的分割结果依赖于种子点的选取,且图像自身的噪声以及灰度值不均匀等问题易在分割目标过程中形成分割空洞,针对以上问题提出了基于超像素的改进区域生长算法。采用拉普拉斯锐化,增强待分割目标边界,之后根据像素灰度相似的特征采用SLIC(简单线性迭代聚类算法)超像素分割将原始图像分割成若干不规则区域,建立不规则区域间的无向加权图,选取种子区域,根据无向加权图以分割好的不规则区域为单位进行区域生长,最后在分割目标边缘处以像素为单位做区域生长,细化边界。对比于传统区域生长算法,改进后的算法在分割结果上受种子点选取影响较小,且能有效地解决分割空洞等问题。对比于聚类分割,Otsu(最大类间方差)阈值分割法等典型算法,该算法在分割精度上具有明显优势。  相似文献   

4.

Image segmentation is the method of partitioning an image into some homogenous regions that are more meaningful for its better understanding and examination. Soft computing methods having the capabilities of achieving artificial intelligence are predominately used to perform the task of segmentation. Due to the variability and the uncertainty present in natural scenes, segmentation is a complicated task to perform with the help of conventional image segmentation techniques. Therefore, in this article a hybrid Fuzzy Competitive Learning based Counter Propagation Network (FCPN) is proposed for the segmentation of natural scene images. This method compromises of the uncertainty handling capabilities of the fuzzy system and proficiency of parallel learning ability of neural network. To identify the number of clusters automatically in less computational time, the instar layer of Counter propagation network (CPN) has been trained by using Fuzzy competitive learning (FCL). The outstar layer of counter propagation network is trained by using Grossberg learning for obtaining the desired output. Region growing method having the tendency to correctly identify edges with simplicity is used for initial seed point selection. Then, the most similar regions in the image are clustered and the number of clusters is estimated automatically. Finally, by identifying the cluster centers the images are segmented. Bacterial foraging algorithm is used to initialize the initial weights to the network, which helps the proposed method in achieving low convergence ratio with higher accuracy. Results validated the higher performance of proposed FCPN method when compared with other states-of-the-art methods. For future work, some other adaptive methods like the fuzzy model-based network can be used to identify multiple object regions and classifying them among separate clusters.

  相似文献   

5.
A novel fuzzy logic and histogram based algorithm called Fuzzy Clipped Contrast-Limited Adaptive Histogram Equalization (FC-CLAHE) algorithm is proposed for enhancing the local contrast of digital mammograms. A digital mammographic image uses a narrow range of gray levels. The contrast of a mammographic image distinguishes its diagnostic features such as masses and micro calcifications from one another with respect to the surrounding breast tissues. Thus, contrast enhancement and brightness preserving of digital mammograms is very important for early detection and further diagnosis of breast cancer. The limitation of existing contrast enhancement and brightness preserving techniques for enhancing digital mammograms is that they limit the amplification of contrast by clipping the histogram at a predefined clip-limit. This clip-limit is crisp and invariant to mammogram data. This causes all the pixels inside the window region of the mammogram to be equally affected. Hence these algorithms are not very suitable for real time diagnosis of breast cancer. In this paper, we propose a fuzzy logic and histogram based clipping algorithm called Fuzzy Clipped Contrast-Limited Adaptive Histogram Equalization (FC-CLAHE) algorithm, which automates the selection of the clip-limit that is relevant to the mammogram and enhances the local contrast of digital mammograms. The fuzzy inference system designed to automate the selection of clip-limit requires a limited number of control parameters. The fuzzy rules are developed to make the clip limit flexible and variant to mammogram data without human intervention. Experiments are conducted using the 322 digital mammograms extracted from MIAS database. The performance of the proposed technique is compared with various histogram equalization methods based on image quality measurement tools such as Contrast Improvement Index (CII), Discrete Entropy (DE), Absolute Mean Brightness Coefficient (AMBC) and Peak Signal-to-Noise Ratio (PSNR). Experimental results show that the proposed FC-CLAHE algorithm produces better results than several state-of-art algorithms.  相似文献   

6.
一种融合聚类与区域生长的彩色图像分割方法   总被引:2,自引:1,他引:2  
论文提出了一种将聚类和区域生长有机融合的彩色图像分割方法。为了捕获图像的纹理特征,首先将图像划分成16×16子块,然后在块中按照视觉一致性准则进行颜色聚类,对于聚类后的子块,提取其颜色与纹理特征,然后采用符合人类视觉特征的生长规则,进行基于子块的区域生长。该方法充分利用了聚类算法和区域生长算法的各自优点,并符合人类视觉特征的分割策略。利用提出的算法对多幅自然图像进行了分割实验,实验结果证明了算法的有效性。  相似文献   

7.
基于多代表点近邻传播聚类算法,提出一种有效的大数据图像的快速分割算法。 该算法首先运用均值漂移算法将彩色图像分割成很多小的同质区域,然后计算每个区域中所有 像素的颜色向量平均值,并用区域数目代替原图像像素点数目,选用区域间的距离作为相似度 的测度指标,最后应用多代表点近邻传播聚类算法在区域相似度矩阵上进行二次聚类,得到最 终的图像分割结果。实验结果证明,提出的算法在大数据图像的分割中取得了较为满意的分割 效果,且分割效率较高。  相似文献   

8.
针对阈值方法常需要人工干预的问题,提出了一种基于灰色系统理论的阈值自动选取算法。首先利用降低灰度级后的直方图检测峰值,然后自动采集峰间内侧附近的样本作为灰色预测的种子点。通过灰色理论GM(1,1)模型预测种子点发展走向,并计算模拟交汇点,得到最优阈值。利用该算法与经典的Otsu,Kapur 算法以及文献[3]和[4]中的方法对15 组不同复杂度图像进行对比阈值分割,并采用AER进行分割评估,实验表明新算法平均分割误差为19.37%,低于上述四种方法。  相似文献   

9.
This paper presents a novel idea of intracranial segmentation of magnetic resonance (MR) brain image using pixel intensity values by optimum boundary point detection (OBPD) method. The newly proposed (OBPD) method consists of three steps. Firstly, the brain only portion is extracted from the whole MR brain image. The brain only portion mainly contains three regions–gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). We need two boundary points to divide the brain pixels into three regions on the basis of their intensity. Secondly, the optimum boundary points are obtained using the newly proposed hybrid GA–BFO algorithm to compute final cluster centres of FCM method. For a comparison, other soft computing techniques GA, PSO and BFO are also used. Finally, FCM algorithm is executed only once to obtain the membership matrix. The brain image is then segmented using this final membership matrix. The key to our success is that we have proposed a technique where the final cluster centres for FCM are obtained using OBPD method. In addition, reformulated objective function for optimization is used. Initial values of boundary points are constrained to be in a range determined from the brain dataset. The boundary points violating imposed constraints are repaired. This method is validated by using simulated T1-weighted MR brain images from IBSR database with manual segmentation results. Further, we have used MR brain images from the Brainweb database with additional noise levels to validate the robustness of our proposed method. It is observed that our proposed method significantly improves segmentation results as compared to other methods.  相似文献   

10.
针对基于Kinect深度信息分割的手势往往包含手腕易造成后续手势误识别的问题,提出一种改进深度信息的手势分割与定位算法。首先,基于深度信息阈值限定在实验空间中检测出手势二值图;然后,根据普通手势特征,提出基于手势端点检测和可变阈值算法分割出准确手势。为得到稳定的分割效果,对分割手势进行形态学处理,最后选取基于手势重心坐标和最大内切圆圆心坐标的联合手势定位法定位手势。实验结果表明,该手势分割方法比已有分割方法更准确可靠,联合手势定位比Kinect软件开发工具包骨骼数据定位和手势重心定位稳定,无奇异点。  相似文献   

11.
石雪松  李宪华  孙青  宋韬 《计算机应用》2021,41(8):2312-2317
针对传统模糊C均值(FCM)聚类算法在处理噪声图像时易受到噪声影响的问题,提出了基于FCM的小波域特征增强的噪声图像分割方法。首先,将噪声图像进行二维小波分解;其次,对近似系数进行边缘增强,同时利用人工蜂群(ABC)优化算法对细节系数进行阈值处理,并将处理后的系数进行小波重构;最后,对重构后的图片使用FCM算法来进行图像分割。选取5幅典型的灰度图像,分别添加高斯噪声和椒盐噪声,使用多种方法进行分割,以分割后图像的峰值信噪比(PSNR)和误分率(ME)作为性能指标,实验结果表明,所提方法分割后的图片相较于传统FCM聚类算法分割方法和粒子群优化(PSO)分割方法分割后的图片在PSNR上最多分别有281%和54%的提升,在ME上最多分别有55%和41%的降低。可见所提出的分割方法较好地保留了图像边缘纹理信息,其抗噪性能与分割性能得到了提升。  相似文献   

12.
改进近邻传播聚类的彩色图像分割   总被引:2,自引:0,他引:2  
针对近邻传播(AP)聚类算法存在运算时间长、空间复杂度高而难以应用于较大规模图像数据处理的问题,提出一种将mean shift(MS)算法和AP算法相结合的彩色图像分割方法——MSAP算法.首先应用MS算法对输入目标图像进行预分割,将分割后的区域数目代替原图像像素点数目作为AP算法输入数据的规模,计算每个区域中所有像素的彩色向量平均值,并将其作为AP算法输入的数据点,选用数据点间的距离作为相似度的测度指标;然后应用AP算法在数据相似度矩阵上进行聚类,得到最终的图像分割结果.实验结果表明,与AP算法相比,MSAP算法在运行时间和分割效果方面都有显著的提高.  相似文献   

13.
14.
In this paper, a rapid and automatic color image segmentation method for the serialized slices of the Visible Human is proposed. The main strategy is based on region growing and pixel color difference. A rapid color similarity computing method is improved and applied for classifying different pixels. An algorithm based on corrosion from four directions is proposed to automatically extract the seed points for the serialized slices. Utilizing this method, the color slice images of the Visible Human body can be segmented in series automatically. Also, the multithreading frame of parallel computing is introduced in the entire segmentation process. This method is simple but rapid and automatic. The primary organs of the Visible Human can be segmented clearly and accurately. The 3D models of these organs after 3D reconstruction are satisfactory. This novel method can provide support to the Visible Human research.  相似文献   

15.
We previously presented an image registration method, referred to hierarchical attribute matching mechanism for elastic registration (HAMMER), which demonstrated relatively high accuracy in inter-subject registration of MR brain images. However, the HAMMER algorithm requires the pre-segmentation of brain tissues, since the attribute vectors used to hierarchically match the corresponding pairs of points are defined from the segmented image. In many applications, the segmentation of tissues might be difficult, unreliable or even impossible to complete, which potentially limits the use of the HAMMER algorithm in more generalized applications. To overcome this limitation, we have used local spatial intensity histograms to design a new type of attribute vector for each point in an intensity image. The histogram-based attribute vector is rotationally invariant, and importantly it also captures spatial information by integrating a number of local intensity histograms from multi-resolution images of original intensity image. The new attribute vectors are able to determine the corresponding points across individual images. Therefore, by hierarchically matching new attribute vectors, the proposed method can perform as successfully as the previous HAMMER algorithm did in registering MR brain images, while providing more generalized applications in registering images of various organs. Experimental results show good performance of the proposed method in registering MR brain images, DTI brain images, CT pelvis images, and MR mouse images.  相似文献   

16.
Color image segmentation based on mean shift and normalized cuts.   总被引:1,自引:0,他引:1  
In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.  相似文献   

17.
目的 为了使图像阈值分割的精度和速度进一步提高,提出了一种基于2维灰度熵阈值选取快速迭代的图像分割方法。方法 首先,提出了1维灰度熵阈值选取的快速迭代算法;然后,考虑图像目标和背景的类内灰度均匀性,给出了基于灰度—邻域平均灰度级直方图的灰度熵阈值选取准则;最后,提出了2维灰度熵阈值选取的快速迭代算法,并采用递推方式计算准则函数中的中间变量,避免其重复运算,加快了运算速度,大大减少了运算量。结果 大量实验结果表明,与近年来提出的3种阈值分割法相比,所提出的方法分割性能更优,分割后的图像中目标区域完整,边缘清晰,细节丰富且运行时间短,仅为基于混沌小生境粒子群优化的二维斜分倒数熵分割法运行时间的3%左右。结论 本文方法对不同类型灰度级图像的分割效果及运行速度均有明显优势,是实际系统中可选择的一种快速有效的图像分割方法。  相似文献   

18.
针对人体点云模型的肢体分割这一动作识别和虚拟重建领域的重要问题,提出了一种基于分类骨架线、测地距离、特征点和姿态分析的多约束肢体分割算法,通过生成点云模型的分类骨架线,配合测地距离获得人体各部位粗分割点云集,利用测地路径方法实现关键特征点的定位,并利用曲线拟合方式进行定位优化,针对头颈、上肢、下肢和躯干之间关联部位的解剖学特征,构造多种约束条件,对各部位粗分割点云集进行了优化再分割。实验结果表明,所提算法对站姿条件下的不同动作、不同体型、不同精度人体点云模型均能取得与视觉理解相吻合的分割效果。通过该算法得到的肢体各部分点云数据可用于姿态分析等后续研究。  相似文献   

19.
区域生长的轮对图像分割   总被引:1,自引:0,他引:1       下载免费PDF全文
轮对作为列车的重要组成部分,其踏面磨耗参数的在线检测对保障轨道交通安全具有重要意义。在基于光截图像测量技术的轮对外形尺寸动态检测中,能否获取完整的轮对轮廓图像至关重要。针对轮对图像特点,提出一种基于区域生长的轮对图像分割新算法。该算法根据不同情况下轮对图像特点,通过基点位置选取恰当的种子点,并确定合适的生长准则。经过区域生长,有效地提取轮对轮廓图像。通过大量图像验证,该算法分割结果图的交迭面积比大于80%,误分面积比小于0.02%。可以在多种情况下有效地提取轮对轮廓曲线,具有良好的抗噪能力。  相似文献   

20.
Colorectal cancer (CRC) is the third most common type of cancer. The use of techniques such as flexible sigmoidoscopy and capsule endoscopy for the screening of colorectal cancer causes physical pain and hardship to the patients. Hence, to overcome the above disadvantages, computed tomography (CT) can be employed for the identification of polyps or growth, while screening for CRC. This proposed approach was implemented to improve the accuracy and to reduce the computation time of the accurate segmentation of the colon segments from the abdominal CT images which contain anatomical organs such as lungs, small bowels, large bowels (Colon), ribs, opacified fluid and bones. The segmentation is performed in two major steps. The first step segments the air-filled colon portions by placing suitable seed points using modified 3D seeded region growing which identify and match the similar voxels by 6-neighborhood connectivity technique. The segmentation of the opacified fluid portions is done using fuzzy connectedness approach enhanced with interval thresholding. The membership classes are defined and the voxels are categorized based on the class value. Interval thresholding is performed so that the bones and opacified fluid parts may be extracted. The bones are removed by the placement of seed points as the existence of the continuity of the bone region is more in the axial slices. The resultant image containing bones is subtracted from the threshold output to segment the opacified fluid segments in all the axial slices of a dataset. Finally, concatenation of the opacified fluid with the segmented colon is performed for the 3D rendering of the segmented colon. This method was implemented in 15 datasets downloaded from TCIA and in real-time dataset in both supine and prone position and the accuracy achieved was 98.73%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号