首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Wind tunnel and numerical study of a small vertical axis wind turbine   总被引:2,自引:0,他引:2  
This paper presents a combined experimental and computational study into the aerodynamics and performance of a small scale vertical axis wind turbine (VAWT). Wind tunnel tests were carried out to ascertain overall performance of the turbine and two- and three-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand the aerodynamics of this performance.Wind tunnel performance results are presented for cases of different wind velocity, tip-speed ratio and solidity as well as rotor blade surface finish. It is shown experimentally that the surface roughness on the turbine rotor blades has a significant effect on performance. Below a critical wind speed (Reynolds number of 30,000) the performance of the turbine is degraded by a smooth rotor surface finish but above it, the turbine performance is enhanced by a smooth surface finish. Both two bladed and three bladed rotors were tested and a significant increase in performance coefficient is observed for the higher solidity rotors (three bladed rotors) over most of the operating range. Dynamic stalling behaviour and the resulting large and rapid changes in force coefficients and the rotor torque are shown to be the likely cause of changes to rotor pitch angle that occurred during early testing. This small change in pitch angle caused significant decreases in performance.The performance coefficient predicted by the two dimensional computational model is significantly higher than that of the experimental and the three-dimensional CFD model. The predictions show that the presence of the over tip vortices in the 3D simulations is responsible for producing the large difference in efficiency compared to the 2D predictions. The dynamic behaviour of the over tip vortex as a rotor blade rotates through each revolution is also explored in the paper.  相似文献   

2.
A new computational model for the aerodynamics of vertical-axis wind turbines is introduced. It is based on the double-multiple streamtube concept and it incorporates the capacity of dealing with rotors whose blades follow oval-trajectories at variable setting-angles. We applied this model to the study of the aerodynamics of an innovative concept in extra-large wind-power plants: the VGOT (variable-geometry oval-trajectory) Darrieus wind turbine. Due to the especial geometric characteristics of the VGOT Darrieus, it was necessary to propose three new non-dimensional parameters to quantify its performance under different wind-conditions: the equivalent power coefficient, the equivalent solidity coefficient and the trajectory efficiency. We show some numerical results testing several rotor configurations working under different wind scenarios.  相似文献   

3.
A Wells turbine is a self-rectifying air flow turbine capable of converting pneumatic power of the periodically reversing air stream in Oscillating Water Column into mechanical energy. The Wells turbine has inherent disadvantages; lower efficiency, poorer starting characteristics, higher axial force and low tangential force in comparison with conventional turbines. Guide vanes before and after the rotor suggest a means to improve the tangential force, hence its efficiency. Experimental investigations are carried out on a Wells turbine with the constant chord and variable chord blade rotors fitted with inlet and outlet guide vanes to understand the aerodynamics. Experiments were also conducted for the above said rotors with various stagger angles to validate the design stagger angle. In addition, the starting and running characteristics of the rotors have been studied and compared with the case without guide vanes. Studies were done at various flow coefficients covering the entire range of flow coefficients over which the turbine is operable. The efficiency, starting characteristics of the turbines with guide vanes have improved when compared with the respective turbines without guide vanes.  相似文献   

4.
The performance of single stage (rotor aspect ratio of 1.0), two stage Savonius rotor with rotor aspect ratios of 1.0 and 2.0 (stage aspect ratios of 0.50 and 1.0) and three stage Savonius rotor with rotor aspect ratios of 1.0 and 3.0 (stage aspect ratios of 0.33 and 1.0) are studied at different Reynolds numbers and compared at the same Reynolds number. The results show that the coefficient of power and the coefficient of torque increase with the increase in the Reynolds numbers for all the rotors tested. The coefficient of static torque is independent of the Reynolds number for all the rotors tested. The performance of two stage and three stage rotors remains the same even after increasing the stage aspect ratio and the rotor aspect ratio by a factor of two and three, respectively. For the same rotor aspect ratio of 1.0, by increasing the number of stages (stage aspect ratio decreases), the performance deteriorates in terms Cp and Ct. However, at the same stage aspect ratio of 1.0 and same Reynolds number, two and three stage rotors show the same performance in terms of coefficient of power and coefficient of torque. The variation in coefficient of static torque is lower for a three stage rotor when compared with the variation of coefficient of static torque for two stage or single stage rotor. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Wells turbines provide a practical solution for wave energy harvesting. The low aerodynamic efficiency of Wells turbines tangibly reduces their output power. Both the turbine efficiency and output power depend on the turbine solidity. The turbine solidity decreases from rotor hub to rotor tip for the commonly used rotors with constant chord‐length blades. The present work introduces a novel Wells turbine rotor geometry. This geometry was obtained by numerically optimizing the rotor's radial solidity distribution. The turbine performance with different rotor geometries was numerically simulated by solving the three‐dimensional Reynolds‐averaged Navier–Stocks equation under incompressible and steady state flow conditions. Simple and multi‐objective optimization were implemented in order to obtain the optimum rotor geometry. The present work showed that an improved turbine performance can be achieved by optimizing the turbine radial solidity distribution. Two different optimized rotor geometries were obtained and presented. The first rotor geometry improved the turbine efficiency by up to 4.7% by reducing its pressure drop. The second rotor geometries enhanced the turbine output power by up to 10.8%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In the present work, the aerodynamic performance prediction of a unique 30 kW counter-rotating (C/R) wind turbine system, which consists of the main rotor and the auxiliary rotor, has been investigated by using the quasi-steady strip theory. The near wake behavior of the auxiliary rotor that is located upwind of the main rotor is taken into consideration in the performance analysis of the turbine system by using the wind tunnel test data obtained for scaled model rotors. The relative size and the optimum placement of the two rotors are investigated through use of the momentum theory combined with the experimental wake model. In addition, the performance prediction results along with the full-scale field test data obtained for C/R wind turbine system are compared with those of the conventional single rotor system and demonstrated the effectiveness of the current C/R turbine system.  相似文献   

7.
D. D. Chao  C. P. van Dam 《风能》2007,10(6):529-550
The effects of modifying the inboard portion of the experimental NREL Phase VI rotor using a thickened, blunt trailing‐edge (or flatback) version of the S809 design airfoil are studied using a compressible, three‐dimensional, Reynolds‐averaged Navier–Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The numerical results for the baseline Phase VI rotor are benchmarked against wind tunnel measurements obtained at freestream velocities of 5, 7 and 10ms?1. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, blunt trailing‐edge blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero‐elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero‐elastic behaviour of a real wind turbine, the code employs 11 basic degrees of freedom corresponding to 11 elastic structural equations. In the BEM theory, a refined tip loss correction model is used. The objective of the optimization model is to minimize the cost of energy which is calculated from the annual energy production and the cost of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero‐elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used in the European Commision‐sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero‐elastic results are examined against the FLEX code for flow past the Tjæreborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 kW experimental rotor, the Tjæreborg 2 MW rotor and the NREL 5 MW virtual rotor) are applied. The results show that the optimization model can reduce the cost of energy of the original rotors, especially for the investigated 2 MW and 5 MW rotors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Savonius风机是一种典型的垂直轴风力机。针对传统风机的发电机部分采用转子、定子一动一静的设计布局,提出了一种新型的发电机结构,从而提高风机发电效率。通过有限元分析软件ANSYS/CFX,对风力机模型进行流体分析,计算Savonius风力机的效率,验证本设计分析方法的正确性。  相似文献   

10.
A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor and each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure and making the structure of a sirocco fan more compact. If the high discharge pressure is obtained with the adoption of the contra-rotating rotors, it could be used for various purposes. Pressure coefficient of a sirocco fan with contra-rotating rotors is 2.5 times as high as the conventional sirocco fan and the maximum efficiency point of contra-rotating rotors shifts to larger flow rate than a conventional sirocco fan. On the other hand, it was clarified from the flow measurement results that circumferential velocity component at the outlet of the outer rotor of contra-rotating ro- tors becomes larger than a conventional one. In the present paper, the performance of a conventional sirocco fan and a sirocco fan with contra-rotating rotors are shown and the internal flow field at the outlet of outer rotor of both cases is clarified. Then, the effect of different kind of contra-rotating rotors on the performance and internal flow field is investigated and the rotor design with higher performance would be discussed.  相似文献   

11.
为量化评估工程应用的气冷低压涡轮带冠转子叶片的叶尖间距大小对涡轮气动性能的影响,综合现有涡轮部件试验能力,以单级轴流低压涡轮性能试验件为基础,通过控制圆度的机加方式磨削转子外环内壁以实现叶尖间距的变化,采用控制冷气流量比的方法,开展5次不同叶尖间距大小的涡轮级性能试验,得到多工况下涡轮效率、换算流量和换算功率等特性参数。采用加载冷气及考虑转子叶冠结构的数值模型进行三维仿真计算,并与试验结果对比分析。研究表明:叶尖间距由0.6 mm增加至3.2 mm,低压涡轮流通能力增大1%,叶冠泄漏量增多3.4%,但做功能力下降2.3%。涡轮效率变化与叶尖间距大小近似呈线性关系,叶尖间距每增加1 mm,效率约降低0.7%,同时,叶尖间距的增加导致了叶冠腔的旋涡结构、气流掺混及主流入侵强度逐渐增大,引起动叶总压损失的增大,叶尖间距增加至3.2 mm导致叶间位置总压损失由0.88增至2.3。  相似文献   

12.
In this paper, a new predictive model that can forecast the performance of a vertical axis wind turbine (VAWT) is presented. The new model includes four primary variables (rotor velocity, wind velocity, air density, and turbine power output) as well as five geometrical variables (rotor radius, turbine height, turbine width, stator spacing, and stator angle). These variables are reduced to include the power coefficient (Cp) and tip speed ratio (TSR). A power coefficient correlation for a novel VAWT (called a Zephyr Vertical axis Wind Turbine (ZVWT)) is developed. The turbine is an adaptation of the Savonius design. The new correlation can predict the turbine's performance for altered stator geometry and varying operating conditions. Numerical simulations with a rotating reference frame are used to predict the operating performance for various turbine geometries. The case study includes 16 different geometries for three different wind directions. The resulting 48 data points provide detailed insight into the turbine performance to develop a general correlation. The model was able to predict the power coefficient with changes in TSR, rotor length, stator spacing, and stator angle, to within 4.4% of the numerical prediction. Furthermore, the power coefficient was predicted with changes in rotor length, stator spacing, and stator angle, to within 3.0% of the numerical simulations. This correlation provides a useful new design tool for improving the ZVWT in the specific conditions and operating requirements specific to this type of wind turbine. Also, the new model can be extended to other conditions that include different VAWT designs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
为提高低风速地区的风能利用率,研究风轮实度对低风速风电机组气动性能的影响。考虑影响风轮实度因素(叶片数量、弦长及安装角),设计2组不同弦长叶片与可调安装角轮毂。安装角改变时不仅会引起实度变化,还会使叶尖速比发生改变。通过车载试验验证安装角不同时对风轮气动性能的影响主要与叶尖速比相关。根据不同风轮表面压力分布数值模拟结果得出:相同风速下,弦长由叶根到叶尖逐渐增大的叶片更易启动。相同条件下,试验机组输出功率与数值模拟机组输出功率最大相差5.37%,说明数值模拟结果可信。随着风轮实度的增加,风速5 m/s时,其风能利用系数呈增大趋势,风速8 m/s时,其风能利用系数呈减小趋势,两趋势相交时实度为25.38%,得出该实度下风轮气动性能较优,即可得到适合低风速地区的风轮实度。  相似文献   

14.
新型双风轮风力机气动特性的三维流场数值模拟   总被引:1,自引:0,他引:1  
基于Simplic算法,采用SST κ-ω湍流模型,利用Fluent6.3数值模拟软件对新型的小型双风轮风力机的气动特性进行了三维流场研究,并与同规格单风轮风力机的三维流场进行了比较.结果表明:与单风轮风力机相比,随着后风轮叶片数目的增加,新型双风轮风力机的湍流强度变大,风力机运行的稳定性在一定程度上有所降低;当后风轮的叶片数目合理时,后风轮对前风轮的影响较小,且可以有效地捕捉到前风轮的漏风,使得新型双风轮风力机的风轮在获得较大迎风面积的同时可以保持较高的转速,进而能够高效地实现风能的两级利用,明显提高发电功率和增大风能利用系数.  相似文献   

15.
为研究垂直轴风力机风场中机组气动性能受格尼襟翼的影响,采用TSST湍流模型对直线翼垂直轴风力机进行数值模拟研究.结果表明:风场上游风力机组尖速比越大,机组间流体加速效果越显著,使风力机组气动性能高于单风力机;在中低尖速比时,格尼襟翼可有效提升单个风力机气动效率,在尖速比较高时,提升效果并不明显;在风力机组中安装格尼襟翼...  相似文献   

16.
MIRAS is a newly developed computational model that predicts the aerodynamic behavior of wind turbine blades and wakes subject to unsteady motions and viscous effects. The model is based on a three-dimensional panel method using a surface distribution of quadrilateral singularities with a Neumann no penetration condition. Viscous effects inside the boundary layer are taken into account through the coupling with the quasi-3D integral boundary layer solver Q3UIC. A free-wake model is employed to simulate the vorticity released by the blades in the wake. In this paper the new code is validated against measurements and/or CFD simulations for five wind turbine rotors, including three experimental model rotors [20–22], the 2.5 MW NM80 machine [23] and the NREL 5 MW virtual rotor [24]. Such a broad set of operational conditions and rotor sizes constitutes a very challenging validation matrix, with Reynolds numbers ranging from 5.0⋅104 to 1.2⋅107.  相似文献   

17.
The enormous demand for large wind turbine rotors has led to a need to develop high‐performance and reliable wind turbine rotors. The flexibility of the huge blade was a challenge in creating a balanced design with regard to dynamic behavior, mass, and power output. To enhance the wind turbine rotor, a newly designed wind turbine system with a supporting rod and damper was proposed and investigated. A scaled blade was experimentally tested, with the results indicating an increase in both frequency and damping of the system. Through the use of a self‐coded numerical model, the correlations between the design constraints and the dynamic behavior, tip displacement, and additional mass of the rotor were demonstrated. This showed that the novel rotor has some preferable characteristics in both static and dynamic aspects. In particular, this blade is stiffer and has a smaller tip displacement compared with a traditional cantilevered blade. These characteristics enabled the effective application of the novel rotor to a 5‐MW wind turbine to achieve a 15.16% power output increase based on the blade element momentum theory with Prandtl correction, as well as 5.1% mass savings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a model to optimize the distribution of chord and twist angle of horizontal axis wind turbine blades, taking into account the influence of the wake, by using a Rankine vortex. This model is applied to both large and small wind turbines, aiming to improve the aerodynamics of the wind rotor, and particularly useful for the case of wind turbines operating at low tip-speed ratios. The proposed optimization is based on maximizing the power coefficient, coupled with the general relationship between the axial induction factor in the rotor plane and in the wake. The results show an increase in the chord and a slightly decrease in the twist angle distributions as compared to other classical optimization methods, resulting in an improved aerodynamic shape of the blade. An evaluation of the efficiency of wind rotors designed with the proposed model is developed and compared other optimization models in the literature, showing an improvement in the power coefficient of the wind turbine.  相似文献   

19.
S. McTavish  S. Rodrigue  D. Feszty  F. Nitzsche 《风能》2015,18(11):1989-2011
A method of increasing the performance of wind farms has been established by limiting the lateral separation between neighbouring wind turbines. The close proximity of the wind turbines creates a beneficial in‐field blockage effect that results in a core of increased speed that is accelerated through the gap between the turbines. A preceding study indicated that the performance of three wind turbines can be increased by over 10% with tip‐to‐tip separation of 0.5 diameters (D) compared with the power output of the respective turbines in isolation. A corresponding flow‐mapping study has been completed in the current work using a single‐normal hot‐wire anemometer to characterize the increased flow speed through a narrow lateral gap, leading to the observation of a region of increased speed that occurs between 0D and 2.5D downstream of the gap between laterally spaced wind turbines. The experimental results were confirmed by conducting a series of computational simulations with the generalized unsteady vortex particle discrete vortex method code. The simulations were conducted with three rotors arranged in five different configurations, and the increase in power generated by the multi‐rotor configurations closely followed the observed experimental trends. The closely spaced lateral wind turbine configurations may have the ability to increase the annual capacity factor of wind farms while reducing wind farm land use requirements. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
One of the more promising advanced concepts for overcoming the economic deterrents to widespread use of windpower is the Diffuser-Augmented Wind Turbine (DAWT). The diffuser controls the expansion of turbine exhaust flow, producing a highly subatmospheric pressure at the turbine exit. The low static pressure induces greater mass flow through the turbine in contrast to a conventional turbine design of the same diameter. Thus, the output power of the DAWT is much larger than for an unshrouded turbine.Our wind tunnel investigation of models of two diffuser design concepts is directed toward unconventional, very short, cost-effective configurations. One approach uses the energetic external wind to prevent separation of the diffuser's internal boundary layer. Another method uses high lift airfoil contours for the diffuser wall shape.Diffuser model tests have indicated almost a doubling of wind power extraction capability for DAWTs compared to conventional turbines. Economic studies of DAWTs have used these test data and recent (1975) cost projections of wind turbines with diameter. The specific power costs ($/kW) for a realistic DAWT configuration are found to be lower than conventional wind turbines for very large size rotors, above 50 m diameter, and for rotor diameters less than about 20 m. The cost-to-benefit assessment for intermediate size rotors is affected by the uncertainty band of cost for these rotor sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号