首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanical properties of recycled aggregate concrete (RAC) incorporating carbonated recycled concrete aggregates (RCAs) have previously been reported. However, the durability of RAC prepared with carbonated RCAs remains to be accessed. In this study, the durability properties of RAC prepared with non-carbonated RCAs and carbonated RCAs, in terms of deformation (drying shrinkage), water absorption and permeability (bulk electrical conductivity, gas and chloride ion permeability), are presented. The experimental results indicated that: (i) the incorporation of the carbonated RCAs in RAC not only helped to reduce the water absorption of RAC, but also reduced its permeability; (ii) when 100% carbonated NRCAs was used, the improvement extent of impermeability was 15.1%, 36.4% and 42.4% for bulk electrical conductivity, chloride ion permeability and gas permeability, respectively. Comparing the results of the mechanical and durability properties, the CO2 curing treatment of RCAs had a greater beneficial impact on the durability properties of the RAC; and (iii) there was a good correlation between the water absorption of RAC and its permeability indicators. The water absorption value of RAC may be used as a criterion of the durability of RAC.  相似文献   

2.
An accelerated carbonation technique was employed to strengthen the quality of recycled concrete aggregates (RCAs) in this study. The properties of the carbonated RCAs and their influence on the mechanical properties of new concrete were then evaluated. Two types of RCAs, an old type of RCAs sourced from demolished old buildings and a new type of RCAs derived from a designed concrete mixture, were used. The chosen RCAs were firstly carbonated for 24 h in a carbonation chamber with a 100% CO2 concentration at a pressure level of 0.1 Bar and 5.0 Bar, respectively. The experimental results showed that the properties of RCAs were improved after the carbonation treatment. This resulted in performance enhancement of the new concrete prepared with the carbonated RCAs, especially an obvious increase of the mechanical strengths for the concrete prepared with the 100% carbonated new RCAs. Moreover, the replacement percentage of natural aggregates by the carbonated RCAs can be increased to 60% with an insignificant reduction in the mechanical properties of the new concrete.  相似文献   

3.
This paper analyzes the possibility of applying the Compressible Packing Model (CPM) for the proportion of concrete mixtures produced with Recycled Concrete Aggregates (RCAs). As a matter of fact, the RCAs are composed of natural aggregates and attached mortar and, as a consequence, they generally present a higher porosity in comparison with ordinary natural aggregates. The higher porosity of RCAs can affect the resulting Recycled Aggregate Concretes (RACs) properties and, for this reason, the mix design procedure available in literature for ordinary concrete mixture cannot be applied as such in the case of RACs. In this context, the present work first presents a preliminary study in which the optimal mixing procedure for RACs is investigated and then, a possible extension of the CPM in the case of RACs is analyzed. Several structural RAC mixtures were designed for three strength classes (25, 45 and 65 MPa) by considering the variation of the aggregate replacement from 0 to 100%. Finally, the proposed procedure is experimentally validated by performing mechanical and durability tests on selected mixtures for the three strength classes with a RCAs content up to 60%. The results reported herein demonstrate the applicability of the CPM for recycled concrete mixtures and highlight as the rational use of RCAs lead to produce structural RAC without affecting its mechanical and the durability performance.  相似文献   

4.
In this paper, the effects of high temperature exposure of recycled aggregate concretes in terms of residual strengths, capillary water absorption capacity and pore size distribution are discussed. Two mineral admixtures, fly ash (FA) and ground granulated blast furnace (GGBS) were used in the experiment to partially replace ordinary Portland cement for concrete production. The water to cementitious materials ratio was maintained at 0.50 for all the concrete mixes. The replacement levels of natural aggregates by recycled aggregates were at 0%, 50% and 100%. The concretes were exposed separately to 300 °C, 500 °C and 800 °C, and the compressive and splitting tensile strength, capillary water coefficient, porosity and pore size distribution were determined before and after the exposure to the high temperatures. The results show that the concretes made with recycled aggregates suffered less deteriorations in mechanical and durability properties than the concrete made with natural aggregates after the high temperature exposures.  相似文献   

5.
In this study, the fresh and hardened properties of self-compacting concrete (SCC) using recycled concrete aggregate as both coarse and fine aggregates were evaluated. Three series of SCC mixtures were prepared with 100% coarse recycled aggregates, and different levels of fine recycled aggregates were used to replace river sand. The cement content was kept constant for all concrete mixtures. The SCC mixtures were prepared with 0, 25, 50, 75 and 100% fine recycled aggregates, the corresponding water-to-binder ratios (W/B) were 0.53 and 0.44 for the SCC mixtures in Series I and II, respectively. The SCC mixtures in Series III were prepared with 100% recycled concrete aggregates (both coarse and fine) but three different W/B ratios of 0.44, 0.40 and 0.35 were used. Different tests covering fresh, hardened and durability properties of these SCC mixtures were executed. The results indicate that the properties of the SCCs made from river sand and crushed fine recycled aggregates showed only slight differences. The feasibility of utilizing fine and coarse recycled aggregates with rejected fly ash and Class F fly ash for self-compacting concrete has been demonstrated.  相似文献   

6.
Abstract

To evaluate the feasibility of using Recycled Concrete Aggregates (RCA) in asphalt mixtures, the coarse RCA and fine RCA were prepared as a partial replacement of the natural aggregates (NA). Different amounts of replacement of NA with RCA were investigated, and the mechanical properties and pavement performance of asphalt mixtures containing different proportions of RCA were analysed based on laboratory tests. The results indicated that with increasing the RCA percentage, the optimum asphalt content increased and the bulk density of mixtures decreased as well. Mixtures containing 40% coarse RCA or 20% fine RCA both showed satisfactory performance. Besides, the mixture containing 40% fine RCA had the highest asphalt content, but gave much better performance compared to the virgin mix except for its bad resistance to permanent deformation. Finally, the pavement performance of mixtures containing 60% coarse RCA and 50% coarse RCA were unacceptable.  相似文献   

7.
In order to enhance the CO2 curing efficiency of concrete block prepared with recycled aggregates, several material characteristics of the concrete block including moisture content, bulk density, aggregate to cement ratio, recycled aggregate content and types of binders, were studied experimentally to assess their effects on the CO2 curing process. The results indicated that, during 2 h of CO2 curing period, the moisture content and aggregate to cement ratio of the prepared blocks had significant effects on the CO2 curing degree and the compressive strength. Appropriate pre-drying of the block specimens before CO2 curing enabled the maximum curing degree, and the compressive strength attained was comparable or superior to that of the 6 h steam cured blocks. The bulk density and recycled aggregate content of the prepared blocks would also influence the CO2 curing degree, but their effects on compressive strength were more complex. It was confirmed that the presence of recycled aggregate in the concrete blocks can promote the CO2 curing efficiency.  相似文献   

8.
In this study, a CO2 curing process was adopted in order to promote rapid strength development of concrete blocks containing recycled aggregates. The influence of several factors associated with the curing conditions on the curing degree and compressive strength of the concrete blocks were investigated, including curing time, temperature, relative humidity, pressure and post-water curing after the pressurized CO2 curing (PCC) process. In addition a flow-through CO2 curing (FCC) method at ambient pressure was also used. The results of the PCC experiments showed that, considerable curing degree and compressive strength were attained during the first 2 h of CO2 curing, and a prolonged curing time yielded slower gains. The variations of temperature from 20 °C to 80 °C and relative humidity from 50% to 80% had limited impacts on PCC; but the effects of CO2 gas pressure on the curing degree and compressive strength were more pronounced. The post-water curing after pressurized CO2 curing allowed the concrete blocks to attain further strength gain but its effectiveness was inversely proportional to the CO2 curing degree already attained. The FCC experimental results indicated that although a lower curing degree and slower strength development at the early age were observed, after 24 h of curing duration, they were comparable to those obtained by the PCC method. To assess the thermal stability of the concrete blocks, the optimum CO2 curing regime was adopted for preparing the concrete blocks with recycled aggregates, and the CO2 cured specimens exhibited better fire resistance than the water-cured ones at 800 °C.  相似文献   

9.
Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.  相似文献   

10.
This paper presents the effect of air curing, water curing and steam curing on the compressive strength of Self Compacting Concrete (SCC). For experimental study, SCC is produced with using silica fume (SF) instead of cement by weight, by the ratios of 5%, 10% and 15%, and fly ash (FA) with the ratios of 25%, 40% and 55%. It is observed that mineral admixtures have positive effects on the self settlement properties. The highest compressive strength was observed in the concrete specimens with using 15% SF and for 28 days water curing. Air curing caused compressive strength losses in all groups. Relative strengths of concretes with mineral admixtures were determined higher than concretes without admixtures at steam curing conditions.  相似文献   

11.
The modeled recycled aggregate concrete (MRAC) which is an idealized model for the real recycled aggregate concrete (RAC) was used in this study. The MRCAs prepared with two types of old mortars were modified by an accelerated carbonation process. The effects of carbonation of MRCA on the micro-hardness of MRCA and the mechanical properties of MRAC were investigated. The results indicated that the micro-hardness of the old interfacial transition zone (ITZ) and the old mortar in the carbonated MRCAs was higher than that in the uncarbonated MRCAs, and the enhancement of the old ITZ was more significant than that of the old mortar. The compressive strength and modulus of MRACs increased when the carbonated MRCAs were utilized, and the improvement was more significant for MRAC prepared with a higher w/c. In addition, a numerical study was carried out and it showed that the improvement in strength by carbonation treatment was less obvious when the difference between the new and old mortar was larger.  相似文献   

12.
This work presents an experimental study of thermal conductivity, compressive strength, first crack strength and ductility indices of recycled PET fiber-reinforced concrete (RPETFRC). We examine PET filaments industrially extruded from recycled PET bottle flakes with different mechanical properties and profiles. On considering a volumetric fiber dosage at 1%, we observe marked improvements in thermal resistance, mechanical strengths and ductility of RPETFRC, as compared to plain concrete. A comparative study with earlier literature results indicates that RPETFRC is also highly competitive over polypropylene-fiber-reinforced concrete in terms of compressive strength and fracture toughness.  相似文献   

13.
This paper describes pullout test results on deformed reinforcing bars in natural and recycled fine aggregate (RFA) concrete. The effects of bar location and RFA grade on bond strength between reinforcing bar and recycled aggregate concrete (RAC) were evaluated through the experimental program. A total of 150 pullout specimens were fabricated for the experiment. Two reinforcing bar orientations were considered with respect to the casting direction; vertical bars and horizontal bars, the latter of which was prepared to evaluate top-bar effect. Considered variables included four RFA replacement ratios (RFArs), two water-absorption grades (RFA-A: 5.83%, RFA-B: 7.95%) of RFA and three reinforcing bar locations (75, 225 and 375 mm height from the bottom of the casting mold). In addition, to evaluate the thermal and aging effect on bond behavior between the reinforcing bar and RFA concrete, some parts of pullout specimens had exposed to rapid freeze–thaw environment or been cured at air during 28 or 730 days. Test results demonstrated that bond strength does not seem to be affected by the RFAr for higher RFA grades (RFA-A), at least up to 60% RFAr. In contrast, the RAC including lower RFA grade (RFA-B) showed clear decreases in bond strength with increasing RFAr, similar to the trend observed for compressive strength. For horizontal pullout specimens, RFA concrete specimens showed higher bond strength gap between top and bottom bars than natural aggregate concrete (NAC) specimens. Bond strengths of the horizontally cast pullout specimens were affected by the flowability of concrete rather than the RFAr or RFA grade. No noticeable degradation occurred during freeze–thaw cycling of the RAC specimens, indicating that the RFA used in this study is appropriate for use in freeze–thaw environments.  相似文献   

14.
再生骨料掺配比对再生透水混凝土性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究再生骨料在透水混凝土(RPC)中的应用,选用废弃路面素混凝土块为再生骨料来源,设计2种系列,研究再生骨料透水混凝土中再生骨料掺配问题,即分别以粒径9.5~19.0 mm,再生骨料按0%、25%、50%、75%和100%(基准)质量替代同粒径天然骨料碎石(系列1)和以4.75~9.5 mm、9.5~19.0 mm两种粒径,再生骨料按0∶1、1∶1、1∶2、2∶1、2∶3和3∶2掺比(系列2)制备RPC,并分析其物理、力学、透水性能及其相互关系,得到了合理的再生骨料替代率和双粒级掺比,在1∶1和2∶1掺配下能够得到较好的强度及透水性能。通过切割试块的图像化处理,分析其孔隙分布特征和趋势,并将平面孔隙率、等效孔径和透水系数联系起来。结果表明,再生透水混凝土的透水能力主要取决于截面孔隙个数和面积。  相似文献   

15.
One of the most promising strategies to manage the large volume of construction and demolition (C&D) waste is recycling and utilizing it for the production of new concrete. However, recycled concrete aggregate (RCA) derived from C&D waste possesses relatively higher porosity and water absorption capability, which often limits its wild utilization. In this study, pozzolan slurry (includes silica fume, nano-SiO2, and fly ash slurries) and CO2 treatments as enhancement methods for RCA were investigated. Test results showed that CO2 treatment was more effective in reducing water absorption and enhancing fluidity, whereas pozzolan slurry treatment could decrease fluidity. Mortars prepared with treated RCA exhibited better mechanical strength and higher resistance towards carbonation and chloride-ion diffusion than those with untreated RCA. Both pozzolan slurry and CO2 treatments enhanced not only the properties of RCA, but also the old and new interfacial transition zones (ITZs) as demonstrated in the measured micro-hardness and SEM observation.  相似文献   

16.
The aim of this paper is to assess the performance of self-compacting glass concrete (SCGC) after exposure to four elevated temperatures of 300 °C, 500 °C, 600 °C and 800 °C. The influence of curing conditions on the high temperature performance of SCGC was also investigated. For each curing regime, five SCGC mixtures were prepared with recycled glass (RG) which was used to replace natural fine aggregate at the level of 0%, 25%, 50%, 75% and 100%. After exposure to the elevated temperatures, concrete mass loss, density, water porosity, ultrasonic pulse velocity (UPV) and water sorptivity were determined and then a compressive strength test was conducted. The test results indicate that regardless of the exposure temperature, all the water cured specimens had higher residual strengths and mass losses while the water porosity and water sorptivity values were lower as compared to the corresponding air cured specimens. The incorporation of RG in the concrete mixes helped to maintain the concrete properties after the high temperature exposure due to the melting and resolidification of the recycled glass in the concrete matrix.  相似文献   

17.
This paper presents the main results of a research carried out to analyze the mechanical properties, intrinsic permeability, drying shrinkage, carbonation, and the self-healing potential of concrete incorporating recycled concrete aggregates. The recycled concrete mixtures were designed by replacing natural aggregates with 0%, 30%, and 100% of recycled concrete gravel (RG) and 30% of recycled concrete sand (RS). The water to equivalent binder ratio was kept constant and recycled concrete aggregates were initially at saturated surface dried (SSD) state. The contribution of the porosity of natural and recycled aggregates to the porosity of concrete was estimated to understand the evolution of the intrinsic permeability and the open porosity. At long term, the maximum variation of drying shrinkage magnitude due to recycled concrete gravels did not exceed 15%. The correlation between drying shrinkage and mass-loss through “drying depth” concept showed that recycled concrete aggregates are affected by drying as soon as concrete is exposed to desiccation. A good correlation between 1-day compressive strength and 18-month carbonation depth was observed. The recycled concrete aggregates presented a good potential for self-healing as the relative recovery of cracks reached up to 60%.  相似文献   

18.
The growing difficulty in obtaining natural coarse aggregates (NCA) for the production of concrete, associated to the environmental issues and social costs that the uncontrolled extraction of natural aggregates creates, led to a search for feasible alternatives. One of the possible paths is to reuse construction and demolition waste (CDW) as aggregates to incorporate into the production of new concrete. Therefore, a vast and detailed experimental campaign was implemented at Instituto Superior Técnico (IST), which aimed at determining the viability of incorporating coarse aggregates from concrete and ceramic brick wall debris, in the production of a new concrete, with properties acceptable for its use in new reinforced and pre-stressed structures. In the experimental campaign different compositions were studied by incorporating pre-determined percentages of recycled coarse concrete aggregates and recycled coarse ceramic plus mortar particles, and the main mechanical, deformability and durability properties were quantified, by comparison with a conventional reference concrete (RC). In this article, these results are presented in terms of the durability performance of concrete, namely water absorption, carbonation and chlorides penetration resistance.  相似文献   

19.
The recycling of construction and demolition (C&;D) waste as a source of aggregates for the production of new concrete has attracted increasing interests from the construction industry. While the environmental benefits of using recycled aggregates are well accepted, some unsolved problems prevent this type of material from wide application in structural concrete. One of the major problems with the use of recycled aggregates in structural concrete is their high water absorption capacity which leads to difficulties in controlling the properties of fresh concrete and consequently influences the strength and durability of hardened concrete. This paper presents an experimental study on the properties of fresh concrete prepared with recycled aggregates. Concrete mixes with a target compressive strength of 35 MPa are prepared with the use of recycled aggregates at the levels from 0 to 100% of the total coarse aggregate. The influence of recycled aggregate on the slump and bleeding are investigated. The effect of delaying the starting time of bleeding tests and the effect of using fly ash on the bleeding of concrete are explored.  相似文献   

20.
This paper discusses the influence of normal water curing, autoclaving and steam curing on the properties of a typical class-C fly ash aggregate. The 10% fines value, water absorption, and porosity of aggregates are correlated with SEM and XRD results to understand the influence of various factors and material characteristics. An increase in duration of normal water curing significantly improved the aggregate properties. Autoclaving and steam curing resulted in relatively lower enhancement in the properties as compared to normal water cured aggregate. Between the accelerated curing methods, autoclaved aggregate possessed properties closer to the normal water cured aggregate due to the dense microstructure formation. Continuation of normal water curing, after initially subjecting the aggregates to accelerated curing, exhibited only a marginal improvement in the properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号