首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A passive solar still with separate condenser has been modeled and its performance evaluated. The system has one basin (basin 1) in the evaporation chamber and two other basins (2 and 3) in the condenser chamber, with a glass cover over the evaporator basin and an opaque condensing cover over basin 3. Basins 1, 2 and 3 yield the first, second and third effects respectively. The top part of the condensing cover is shielded from solar radiation to keep the cover relatively cool. Water vapor from the first effect condenses under the glass cover while the remainder of it flows into the condenser, by purging and diffusion, and condenses under the liner of basin 2. The performance of the system is evaluated and compared with that of a conventional solar still under the same meteorological conditions. Results show that the distillate productivity of the present still is 62% higher than that of the conventional type. Purging is the most significant mode of vapor transfer from the evaporator into the condenser chamber. The first, second and third effects contribute 60, 22 and 18% of the total distillate yield respectively. It is also found that the productivity of the solar still with separate condenser is sensitive to the absorptance of the liner of basin 1, and the mass of water in basins 1 and 2. The mass of water in basin 3 and wind speed have marginal effect on distillate production. Other results are presented and discussed in detail.  相似文献   

2.
A novel multistage solar desalination system with a photovoltaic heater was manufactured. The base of the down basin of the solar still had a layer of paraffin wax with a mass of 13 kg as a phase change material. The system has been studied to evaluate the enhancement of freshwater. Saltwater was heated by solar radiation and by a direct current water heater. The surfaces of condensation vapor, such as the pyramid glass cover and lower surface of two stacked trays, were designed. This is to improve the productivity of freshwater by decreasing the resistance of condensation. The high temperature of the glass cover is modified by using a cooling water shower, especially at the highest intensity. The study includes parameters, such as cooling water shower flow rate, down basin water level, and the effect of the heater. It is observed that the novel solar desalination is proportional to solar radiation, paraffin wax, the heat input from a heater, cooling water shower flow rate, and down basin water level. The Multiple Stage Effect Photovoltaic Heater (MSEPVH) can produce 15 L/day of distilled water. The excellent flow rate of cooling water, the total freshwater, and the efficiency of MSEPVH for the optimal day were mathematically and experimentally determined.  相似文献   

3.
The effect of water flowing over the upper glass cover of a double basin solar still on its transient performance has been presented. A comparative study of the daily distillate production of a double basin solar still with and without water flowing over the upper glass cover has been made, and some interesting conclusions have been drawn. Numerical calculations have been made for a typical hot day (viz 2 May 1980) in Delhi.  相似文献   

4.
A concentrated solar absorber with finned phase change materials was experimentally studied using a Scheffler type parabolic dish concentrator. The absorber's inner surface was fixed with hollow cylindrical containers filled with phase change material (PCM) for heat transfer augmentation. The absorber's selected PCM was acetanilide (Melting point of 116 °C)—the cylindrical capsules protruding into the fluid side to create turbulence and mixing and acting as fins. The absorber surface temperature was observed to be about 130–150 °C during the outdoor tests while passing fluid through the absorber. The fluid flow rate varied from 60 to 100 kg/h during the outdoor experiments. The peak energy and exergy efficiency of parabolic dish collector (PDC) at the fluid flow rate of 80 kg/h with PCM integrated solar absorber was found to be about 67.88% and 6.96%, respectively. The integration of cylindrical PCM containers resulted in more heat transfer augmentation in the solar absorbers. The optimized solar absorber could be suitable for various applications like steam generation, biomass gasification, space heating, and hydrogen generation.  相似文献   

5.
In the current research work, performance enhancement of stepped solar still (SSS) having an external reflector (ER) and glass cover cooling (GCC) arrangements is presented. The individual and combined effects of ER and GCC on the performance of SSS have been evaluated and compared with simple SSS. The GCC reduces the glazing temperature significantly and results in increased distillate. The ER reflected the solar radiation inside the basin that increases the water temperature, consequently increasing distillate. The SSS having ER and GCC (SSS-ER-GCC) gave a maximum distillate of 4.340 kg/m2 which was observed, respectively, 12.43%, 3.21%, and 1.36% higher than that of simple SSS, SSS with ER (SSS-ER) and SSS with GCC (SSS-GCC). The average energy efficiency of SSS-ER-GCC was evaluated as 40.78%, which was found to be 14.36%, 7.84%, and 10.64%, respectively, higher than that of simple SSS, SSS-ER, and SSS-GCC. The carbon credits earned and CO2 mitigation were found the maximum for SSS-ER-GCC having values $65.96 and 4.40 tons, respectively. The economic payback period was found the minimum (490 days) for SSS-ER-GCC.  相似文献   

6.
This communication presents a comparative study of a single basin solar still under various modes of operation. A simple transient analysis of all the modes under the same meteorological conditions has been presented. The water depth in the solar still and the absorptivity of the basin liner along with the water flow over the glass cover of the still has been found to affect the daily distillate production of the system considerably. The thermosyphon mode enhances the daily distillate production. It has also been observed that the evaporative heat transfer coefficient is a very strong function of temperature.  相似文献   

7.
The numerical study of solar cell temperature for concentrating PV with concentration ratio of 10× is presented in this paper. A two dimensional thermal model has been developed to predict the temperature for PV concentrator system (solar cell and lens) with and without passive cooling arrangements. Based on a thermal model, the result shows that maximum of four numbers of uniform fins of 5 mm height and 1 mm thickness can be effectively used to reduce the solar cell temperature. In addition to that, the effects of ambient temperature and solar radiation intensity on the solar cell temperature have also been investigated for the system with and without cooling fins. Based on the influencing parameters of ambient temperature and solar radiation, two separate solar cell temperature correlations has been proposed for systems with and without cooling fins to predict the cell temperature for the range of given parameters. In our previous studies, the present 2-D model was extensively validated with a comprehensive unified model [8], [9] and [10].  相似文献   

8.
9.
Hiroshi Tanaka 《Solar Energy》2010,84(11):1959-251
In this report, we present a theoretical analysis of a basin type solar still with internal and external reflectors. The external reflector is a flat plate that extends from the back wall of the still, and can presumably be inclined forwards or backwards according to the month. We have theoretically predicted the daily amount of distillate produced by the still throughout the year, which varies according to the inclination angle of both the glass cover and the external reflector, at 30°N latitude. We found the optimum external reflector inclination for each month for a still with a glass cover inclination of 10-50°. The increase in the average daily amount of distillate throughout the year of a still with inclined external reflector with optimum inclination in addition to an internal reflector, compared to a conventional basin type still was predicted to be 29%, 43% or 67% when the glass cover inclination is 10°, 30° or 50° and the length of external reflector is half the still’s length.  相似文献   

10.
This paper presents a theoretical analysis of a basin type solar still with an internal reflector (two sides and back walls) and an inclined flat plate external reflector on a winter solstice day at 30° N latitude. We are proposing a new geometrical method for calculating the solar radiation reflected by the inclined external reflector and then absorbed on the basin liner. Using this method, we performed a numerical analysis of heat and mass transfer in the still in order to determine the effectiveness of the inclination of the external reflector. We found that the benefit of a vertical external reflector would be smaller or even negligible for a still with a larger value for the glass cover angle, while an inclined external reflector can increase the distillate productivity of the still at any glass cover angle, and the external reflector angle should be set at about 15° from vertical on a winter solstice day. The daily amount of distillate of the still with the inclined external reflector would be about 16% greater than that with the vertical external reflector, and about 2.3 times as large as that of the still with neither the internal nor the external reflector on a winter solstice day.  相似文献   

11.
The performance of compound parabolic concentrator assisted tubular solar still (CPC-TSS) and compound parabolic concentrator-concentric tubular solar still (CPC-CTSS) (to allow cooling water) with different augmentation systems were studied. A rectangular saline water trough of dimension 2 m × 0.03 m × 0.025 m was designed and fabricated. The effective collector area of the still is 2 m × 1 m with five sets of tubular still – CPC collectors placed horizontally with north-south orientation. Hot water taken from the CPC-CTSS was integrated to a pyramid type and single slope solar still. Diurnal variations of water temperature, air temperature, cover temperature and distillate yield were recorded. The results showed that, the productivity of the un-augmented CPC-TSS and CPC-CTSS were 3710 ml/day and 4960 ml/day, respectively. With the heat extraction technique, the productivity of CPC-CTSS with a single slope solar still and CPC-CTSS with a pyramid solar still were found as 6460 ml/day and 7770 ml/day, respectively. The process integration with different systems cost was found slightly higher but the overall efficiency and the produced distilled water yield was found augmented.  相似文献   

12.
A weir-type solar still is proposed to recover rejected water from the water purifying systems for solar hydrogen production. This consists of an inclined absorber plate formed to make weirs, as well as a top basin and a bottom basin. Water is flowed from the top basin over the weirs to the bottom collection basin. A small pump is used to return the unevaporated water to the top tank. Hourly distillate productivity of the still with double- and single-pane glass covers was measured and the latter showed higher production rates. The average distillate productivities for double- and single-pane glass covers are approximately 2.2 and 5.5 l/m2/day in the months of August and September in Las Vegas, respectively. Mathematical models that can predict the hourly distillate productivity are developed. These compared well with the experimental results. Productivity of the weir-type still with a single-pane glass was also compared with conventional basin types tested at the same location. The productivity of the weir-type still is approximately 20% higher. The quality of distillate from the still is analyzed to verify the ability of the still to meet the standards required by the electrolyzers.  相似文献   

13.
A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved.The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia–water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle.The direct ammonia–water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at −10 °C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively.  相似文献   

14.
In this work, an attempt has been made to enhance the distillate output of a single-basin solar still by coupling it with a flat plate solar collector and by coating a thin layer of SnO2 on one side of the transparent cover plate. The heat transfer fluid was circulated between the still and the collector through a heat exchanger and storage tank by thermosyphonically induced flow. It was observed that good insulation around the storage tank considerably increased the yield at night due to the decrease of ambient temperature. Thermosyphonically induced flow eliminated the need for pumps and control units. A layer of SnO2 on the transparent cover lowered the thermal radiation loss, one of the major sources of heat energy loss in a solar still. Values for solar radiation, ambient air temperature, salt-water temperature in the basin, temperature of air-vapour mixture within the still, input and output temperatures of the heat exchanger heat transfer fluid, and the distillate yield were collected by a data acquisition system. After making the above modifications, the distillate yield was measured to be 6·745 litres per square metre per day for a September solar radiation of 17820 KJ at Istanbul-Gebze. To compare the distillate yield, a conventional solar still with similar dimensions to those of the improved still was constructed. The overall efficiency of the improved still was found to be 3·26 times the efficiency of the conventional still.  相似文献   

15.
The present study aims to compare three different types of designed flat-plate solar air heaters, two having fins (Type II and Type III) and the other without fins (Type I), one of the heater with a fin had single glass cover (Type III) and the others had double glass covers (Type I and Type II). The energy and exergy output rates of the solar air heaters were evaluated for various air flow rates (25, 50 and 100 m3/m2 h), tilt angle (0°, 15° and 30°) and temperature conditions versus time. Based on the energy and exergy output rates, heater with double glass covers and fins (Type II) is more effective and the difference between the input and output air temperature is higher than of the others. Besides, it is found that the circulation time of air inside the heater played a role more important than of the number of transparent sheet. Lower air flow rates should be preferred in the applications of which temperature differences is more important.  相似文献   

16.
This paper presents an analysis of the transient performance of a basin type mounted still; explicit expressions for hourly variation of temperature of glass cover and water in the basin and distillate output have been obtained. The results of the analysis are in good agreement with experiments.  相似文献   

17.
In this communication a transient analysis of a solar distillation system with water flow over the glass cover is presented. The system comprises of a single basin solar still coupled with a flat plate solar collector. Due to the increased difference between water and glass temperatures the yield of this system is significantly increased. The performance of this system has been compared with that of a simple single basin solar still (SBSS), SBSS with water flow over it and SBSS coupled with a flat plate collector; and it is concluded that a SBSS with water flow over it shows the best performance.  相似文献   

18.
The latent heat of condensation is lost to the atmosphere; hence it is not utilized to increase distillate output of single basin solar stills. This difficulty was overcome by attaching an additional basin to the main basin. The performance of the double basin solar still was also increased by attaching vacuum tubes to the lower basin; hence the lower basin possessed a higher temperature throughout the day. The latent heat of condensation of the bottom basin was also utilized to increase distillate. But the distillate output of the top basin was even lower compared with that of the bottom basin. This paper proposed a novel approach to increase the distillate output of the double basin solar still attached with vacuum tubes by introducing different sensible energy storage materials like pebbles, black granite gravel and calcium stones to increase the basin area. Experiments were conducted in climate conditions of Mehsana (23.6000° N, 72.4000° E) Gujarat from April to September 2013 with a constant water depth of 2 cm in the top basin with and without the use of basin materials. The results showed that the distillate output of basin material with calcium stones is greater (74%) compared with that of black granite gravel and pebbles. The integration of vacuum tubes with solar still greatly increases the distillate output of the solar still by providing hot water at the lower basin.  相似文献   

19.
A.E. Kabeel   《Energy》2009,34(10):1504
Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m2 and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m2 after solar noon. An estimated cost of 1 l of distillate was 0.065 $ for the presented solar still.  相似文献   

20.
The nonuniform and high‐gradient solar radiation flux on the absorber surface of solar dish concentrator/cavity receiver (SDCR) system will affect its operational reliability and service lifetime. Therefore, homogenization of the flux distribution is critical and important. In this paper, 2 mirror rearrangement strategies and its optimization method by combining a novel ray tracing method and the genetic algorithm are proposed to optimize the parabolic dish concentrator (PDC) so as to realize the uniform flux distribution on the absorber surface inside the cavity receiver of SDCR system. The mirror rearrangement strategy includes a mirror rotation strategy and mirror translation strategy, which rotate and translate (along the focal axis) each mirror unit of the PDC to achieve multipoint aiming, respectively. Firstly, a correlation model between the focus spot radius and mirror rearrangement parameters is derived as constraint model to optimize the PDC. Secondly, a novel method named motion accumulation ray‐tracing method is proposed to reduce the optical simulation time. The optical model by motion accumulation ray‐tracing method and optimization model of SDCR system are established in detailed, and then, an optimization program by combining a ray‐tracing code and genetic algorithm code in C++ is developed and verified. Finally, 3 typical cavity receivers, namely, cylindrical, conical, and spherical, are taken as examples to fully verify the effectiveness of these proposed methods. The results show that the optimized PDC by mirror rearrangement strategies can not only greatly improve the flux uniformity (ie, reduce the nonuniformity factor) and reduce the peak local concentration ratio of the absorber surface but also obtain excellent optical efficiency and direct useful energy ratio. A better optimization results when the PDC is optimized by mirror rotation strategy at aperture radius of 7.0 m, focal length of 6.00 m, and ring number of 6; the nonuniform factor of the cylindrical, conical, and spherical cavity receivers is greatly reduced from 0.63, 0.67, and 0.45 to 0.18, 0.17, and 0.26, respectively; the peak local concentration ratio is reduced from 1140.00, 1399.00, and 633.30 to 709.10, 794.00, and 505.90, respectively; and the optical efficiency of SDCR system is as high as 92.01%, 92.13%, and 92.71%, respectively. These results also show that the dish concentrator with same focal length can match different cavity receivers by mirror rearrangement and it can obtain excellent flux uniformity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号