首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cities around the world generate substantial quantities of municipal solid waste, including organic residues. These organic residues can be managed productively and given value, or they can simply be wasted. Municipal solid waste management is a serious environmental and public health concern in developing countries. In addition, collecting, transporting and disposing of municipal solid wastes presents formidable challenges to many developing country cities. It is believed that the problems are likely to become even more pronounced as the level and pace of urbanization continue to grow rapidly. Moreover, cost recovery is a serious problem of municipal solid waste management in many cities in the developing world. This paper considers how anaerobic digestion can give value to organic residues and help reduce the problem of municipal waste management. Biogas technology has the potential to work for the growing urban populations of Africa as both an energy source and a waste management (minimization) tool that can be utilized both at a small or large scale. In this paper we review the potential roles of biogas in urban applications. Specifically, we review organic waste treatment methods as well as opportunities and challenges for urban application of biogas installations and identify the critical conditions for success of biogas in urban applications.  相似文献   

2.
This paper presents an analysis of potential technological advancements for a 1.5 MW wind turbine using a hybrid stochastic method to improve uncertainty estimates of embodied energy and embodied carbon. The analysis is specifically aimed at these two quantities due to the fact that LCA based design decision making is of utmost importance at the concept design stage. In the presented case studies, better results for the baseline turbine were observed compared to turbines with the proposed technological advancements. Embodied carbon and embodied energy results for the baseline turbine show that there is about 85% probability that the turbine manufacturers may have lost the chance to reduce carbon emissions, and 50% probability that they may have lost the chance to reduce the primary energy consumed during its manufacture. The paper also highlights that the adopted methodology can be used to support design decision making and hence is more feasible for LCA studies.  相似文献   

3.
Community-based social marketing (CBSM) has shown to be very effective at inducing behavioural change due to its pragmatic approach. It has been found that nonintegrated intensive approaches towards changing individual's behaviour, such as education and economic self-interest are not successful.This paper will explain how a large urban electricity meter replacement program can achieve a reduction in peak demand and overall energy consumption through the use of advanced metering infrastructure (AMI or ‘smart meters’) coupled with CBSM, which in turn enables the progression towards a ‘smart grid’. In order to measure success the following targets were set:
  • •Peak demand reduction (peak lopping) of 20% from the households participating in the Behaviour Change Programs (BCPs).
  • •Peak demand shifting (load shifting) to reduce energy consumption during ‘super peak’ by 10% in BCP participating households.
  • •Average total energy use reduction of 10% in BCP participating households.
The energy efficiency actions discussed with householders during eco-coaching, and other feedback communications, are identified by utilising the information regarding barriers and benefits generated from the research phase prior to coaching. These actions can include referral to other initiatives such as the provision of reduced cost solar PV power systems, direct load control devices for domestic air-conditioners, the time-of-use pricing product, the provision of in-home-displays (IHD) and other devices necessary for development of a ‘smart grid’.  相似文献   

4.
The European Union relies largely on bioenergy to achieve its climate and energy targets for 2020 and beyond.We assess, using Attributional Life Cycle Assessment (A-LCA), the climate change mitigation potential of three bioenergy power plants fuelled by residual biomass compared to a fossil system based on the European power generation mix. We study forest residues, cereal straws and cattle slurry.Our A-LCA methodology includes: i) supply chains and biogenic-CO2 flows; ii) explicit treatment of time of emissions; iii) instantaneous and time-integrated climate metrics.Power generation from cereal straws and cattle slurry can provide significant global warming mitigation by 2100 compared to current European electricity mix in all of the conditions considered.The mitigation potential of forest residues depends on the decay rate considered. Power generation from forest logging residues is an effective mitigation solution compared to the current EU mix only in conditions of decay rates above 5.2% a−1. Even with faster-decomposing feedstocks, bioenergy temporarily causes a STR(i) and STR(c) higher than the fossil system.The mitigation potential of bioenergy technologies is overestimated when biogenic-CO2 flows are excluded. Results based solely on supply-chain emissions can only be interpreted as an estimation of the long-term (>100 years) mitigation potential of bioenergy systems interrupted at the end of the lifetime of the plant and whose carbon stock is allowed to accumulate back.Strategies for bioenergy deployment should take into account possible increases in global warming rate and possible temporary increases in temperature anomaly as well as of cumulative radiative forcing.  相似文献   

5.
Rotating stall around a small-scale horizontal axis wind turbine was experimentally studied to characterize and assess smart rotor control by plasma actuators. Phase-locked Particle Image Velocimetry was used to map the flow over the rotor blade suction surface at numerous radial stations at a range of tip-speed-ratios. Flow separation occurred from the inboard of the blade and spread radially outwards as the tip-speed-ratio reduced. Plasma actuators placed along the span that produced a chord-wise body force had very little effect on the flow separation, even when operated in pulsed forcing mode. In contrast, plasma actuators along the blade chord that produced a body force into the radial directions (plasma vortex generators) successfully mitigated rotating stall. Torque due to aerodynamic drag was reduced by up to 22% at the lowest tip-speed-ratio of 3.7, suppressing stall over the outboard 50% of the blade. This was due to quasi-two-dimensional flow reattachment in the outboard region, and shifting of a fully stalled zone towards the hub in the inboard region because the plasma-induced body force counteracted the Coriolis-induced radial flow. This can significantly increase the turbine power output in unfavourable wind conditions and during start-up.  相似文献   

6.
Implementation of a lignin-based biorefinery into one of the existing kraft pulp mills calls for increased consumption of resources such as steam (by up to 21.5%), water (by up to 3%), carbon dioxide (by up to 16.2%), and sulphuric acid (by up to 11.3%). To compensate for these extra demands on resources, an advanced process integration method was used to identify steam, water, and chemicals savings options and resource recovery opportunities within the kraft process. Given the importance of the lignin-based biorefinery, an economic viability assessment was carried out toward four scenarios, namely: a reference case relating to a stand-alone kraft pulp mill without a pulp production increase but with/without advanced process integration (scenarios #1 and #2) as well as to an integrated biorefinery with a pulp production increase by 5, 10 and 15% (scenarios #3 and #4).  相似文献   

7.
Bioconversion production of ethanol from cellulosic feedstock is generally proposed to use direct fermentation of sugars to ethanol. Another potential route for ethanol production is fermentation of sugars to acetic acid followed by hydrogenation to convert the acetic acid into ethanol. The advantage of the acetogen pathway is an increased ethanol yield; however, using an acetogen requires the additional hydrogenation, which could substantially affect the life cycle global warming potential of the process. Assuming a poplar feedstock, a cradle to grave Life cycle assessment (LCA) is used to evaluate the environmental impacts of an acetogen based fermentation pathway. An LCA of a fermentation pathway that uses ethanologen fermentation is developed for comparison. It is found that the ethanologen and acetogen pathways have Global Warming Potentials (GWP) that are 92% and 46% lower than the GWP of gasoline, respectively. When the absolute GWP reduction compared to gasoline is calculated using a unit of land basis, the benefit of the higher ethanol yield using the acetogen is observed as the two pathways achieve similar GWP savings. The higher ethanol yield in the acetogen process plays a crucial role in choosing a lignocellulosic ethanol production method if land is a limited resource.  相似文献   

8.
In the present paper the functionality of the Semisubmersible wind energy and Flap-type wave energy Converter (SFC) is examined experimentally. In order to study the functionality of the SFC, the focus is on operational environmental conditions. SFC is a combined concept that utilizes offshore wind energy and ocean wave energy for power production. Details are presented as far as the physical modelling of the wind turbine with the use of a redesigned small-scale rotor and of the Power Take-Off mechanism of the Wave Energy Converters (WECs) with the use of a configuration that is based on a mechanical rotary damper. Tests with quasi-static excitation, motion decay, regular and irregular waves without and with wind that is uniform are conducted on an 1:50 scale physical model. The experimental data are compared with numerical predictions obtained by a fully coupled numerical model using Simo/Riflex tool. A good agreement is observed between experimental and numerical predictions. The combined operation of WECs doesn't affect the tension of mooring lines nor the acceleration of nacelle and the bending moment in tower's base. The produced power of the WECs of the SFC and consequently the functionality of the SFC is estimated.  相似文献   

9.
Offshore wind power is expanding with particular development plans in the Baltic and the North Sea. To reassure an environmentally acceptable development, regulatory authorities need to make informed decisions even when evidence and experience are scarce. In this study Ecological Risk Assessment (ERA) has been applied on a wind farm project in Kattegat, proposed within a spawning ground for the Kattegat cod, a threatened population of Atlantic cod (Gadus morhua L.). Six stressors with potential impacts on cod and related to wind farms were investigated. Three of them – extreme noise from pile driving, noise from vessels, and disturbances due to cable-trenching – are related to the construction phase, while lubricant spills and noise from turbines together with electric fields from cables are related to the operation phase. The ecological risk was derived from the combined likelihood and magnitude of potential adverse effects from stressors to the cod population using a weight-of-evidence (WOE) ranking procedure. Available evidence was evaluated based on its reliability, and contradictory arguments were balanced against each other using evidence maps. The option of performing hazardous construction events (e.g. pile-driving) outside biologically sensitive periods was incorporated in the assessment. It was shown that the construction of the wind farm poses a high risk to cod, as defined by the ranked and combined likelihoods and magnitudes of adverse effects. However by avoiding particular construction events during the cod recruitment period ecological risks can be significantly reduced. Specifically for this case, ecological risks are reduced from high to low by avoiding pile-driving from December through June, which confirms previous indications that pile-driving is the most ecologically hazardous activity of offshore wind power development. Additional risk reduction is achieved by avoiding cable trenching from January through May. The study thus illustrates the effectiveness of time-planning for risk reduction. Importantly, the study illustrates how combined ERA and WOE methods can be valuable for handling uncertainties of environmental impacts within offshore industrial development.  相似文献   

10.
This paper reviews developments in the direct-fired biomass power sector and provides an up to date investment outlook by calculating the Net Present Value of new investments, and the appropriate level of Feed-in-Tariff needed to stimulate future investment. An overview is provided of support policies, historical growth in installations, and main market players. A number of data sources is combined to build a database with detailed information of individual biopower projects. This data is used to describe technological and market trends, which are used in a cash flow model to calculate the NPV of a typical project. The NPV for new projects is estimated to be negative, and investment should be expected to stall without proper policy intervention. Increasing fuel prices, local competition over biomass fuel resources, lower than expected operational performance and a downturn in carbon markets have deteriorated the investment outlook. In order to ensure reasonable profitability, the Feed-In-Tariff should be increased, from the current level of 90.9 € MWh−1, to between 97 and 105 € MWh−1. Where possible, government organizations should help organize demand for the supply of heat. Local rural energy bureaus may help organize supply networks for biomass fuels throughout the country, in order to reduce seasonal and local fuel scarcity and price fluctuations.  相似文献   

11.
The future energy system in community level should be more ‘smart’ to secure reliability, enhance market service, minimize environmental impact, reduce costs and improve the use of renewable energy source (RES). Therefore, this paper proposes an energy integration system – smart hybrid renewable energy for communities (SHREC). It considers both thermal (heating and cooling) and electricity market in a large community level and highlight the interactions between them through utilizing RES, combined heat and power (CHP) and energy storages. A planning model based on CHP modelling is developed for the SHREC system. A linear programming (LP) algorithm is developed to optimize the SHREC system in a weekly period and the results are compared with an existing energy optimization software. We also demonstrate the model in a sample SHREC system during three typical weeks with cold, warm and mid-season weather in the year 2011. The results indicate that the developed modelling and optimization method is more efficient and flexible for the smart hybrid renewable energy systems.  相似文献   

12.
Most residents of Canada's 300 remote communities do not have access to natural gas and must rely upon higher cost and/or less convenient heat sources such as electric heat, heating (furnace) oil, propane, and/or cord wood. This research sought to determine the techno-economic feasibility of increasing biomass utilization for space and hot water heating in remote, off-grid communities in Canada and abroad using a two-option case study approach: 1) a district energy system (DES) connected to a centralized heat generation energy centre fuelled by wood chips; and 2) a decentralized heating option with wood pellet boilers in each individual residence and commercial building. The Nuxalk First Nation Bella Coola community was selected as a case study, with GIS, ground surveys, and climate data used to design DES routes and determine heat demand. It was determined that biomass has the potential to reduce heat costs, reduce the cost of electricity subsidization for electrical utilities, reduce greenhouse gas emissions, and increase energy independence of remote communities. Although results of the analysis are site-specific, the research methodology and general findings on heat-source economic competitiveness could be utilized to support increased bioheat production in remote, off-grid communities for improved socio-economic and environmental outcomes.  相似文献   

13.
Macroalgae have not met their full potential to date as biomass for the production of energy. One reason is the high cost associated with the pretreatment which breaks the biomass's crystalline structure and better exposes the fermentable sugars to anaerobes. In the attempt to overcome this technological barrier, the performance of a Hollander beater mechanical pretreatment is assessed in this paper. This pretreatment has been applied to a batch of Laminariaceae biomass and inoculated with sludge from a wastewater treatment plant. The derived biogas and methane yields were used as the responses of a complex system in order to identify the optimal system input variables by using the response surface methodology (RSM). The system's inputs considered are the mechanical pretreatment time (5–15 min range), the machine's chopping gap (76–836 μm) and the mesophilic to thermophilic range of temperatures (30–50 °C). The mechanical pretreatment was carried out with the purpose of enhancing the biodegradability of the macroalgal feedstock by increasing the specific surface area available during the anaerobic co-digestion. The pretreatment effects on the two considered responses are estimated, discussed and optimized using the tools provided by the statistical software Design-Expert v.8. The best biogas yield of treated macroalgae was found at 50 °C after 10 min of treatment, providing 52% extra biogas and 53% extra methane yield when compared to untreated samples at the same temperature conditions. The highest biogas rate achieved by treating the biomass was 685 cc gTS1, which is 430 cc gTS1 in terms of CH4 yield.  相似文献   

14.
Hybrid microgrid systems are an emerging tool for rural electrification due in part to their purported environmental benefits. This study uses Life Cycle Assessment (LCA) to compare the environmental impacts of a diesel/PV/wind hybrid microgrid on the island of Koh Jig, Thailand with the electrification alternatives of grid extension and home diesel generators. The impact categories evaluated are: acidification potential (kg SO2 eq), global warming potential (kg CO2 eq), human toxicity potential (kg 1.4 DCB eq), and abiotic resource depletion potential (kg Sb eq). The results show that the microgrid system has the lowest global warming and abiotic resource depletion potentials of all three electrification scenarios. The use phase of the diesel generator and the extraction of copper are shown to significantly contribute to the microgrid's environmental impacts. The relative environmental impacts of the grid extension scenario are found to be proportional to the distance required for grid extension. Across all categories except acidification potential, the impacts from the home diesel generators are the largest. Sensitivity analyses show that maximizing the renewable energy fraction does not necessarily produce a more environmentally sustainable electrification scenario and that the diesel generator provides versatility to the system by allowing power production to be scaled significantly before more technology is needed to meet demand. While the environmental benefits of the microgrid increase as the installation community becomes more isolated, the choice of electrification scenario requires assigning relative importance to each impact category and considering social and economic factors.  相似文献   

15.
In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50 kW which allows a typical passenger vehicle to be 80% charged in 10–15 min, compared with 6–8 h for a 6.6 kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges.Depending on the utility rate structure, a DC fast charger can experience annual demand charges of several thousand dollars. Therefore in these cases there is an opportunity to mitigate or even avoid the demand charges incurred by coupling the unit with an appropriately sized energy storage system and coordinating the way in which it integrates. This paper explores the technical and economical suitability of coupling a ground energy storage system with a DC fast charge unit for mitigation or avoidance of demand charges and lessening the impact on the local electricity network. This paper also discusses the concept of having the system participate in demand response programs in order to provide grid support and to further improve the economic suitability of an energy storage system.  相似文献   

16.
This paper evaluates the responses of three aggregated models of a wind farm consisting of variable speed permanent magnet synchronous generator wind turbines when wind fluctuations or grid disturbances occur. These responses are compared with those of the detailed wind farm model, in order to verify the effectiveness of the studied aggregation methods for this type of wind farms. The equivalent wind farm models have been developed by adapting different aggregation criteria that already exist in technical literature and had been applied to other technologies. In this work, these methods have been modified to suit them to the permanent magnet synchronous generator technology. The results show that the three aggregated models provide very similar results to the detailed model, both in the evolution of active power when fluctuations in wind speed occur, and in the active power and DC-link voltage during the two simulated voltage dips. Notably, the aggregated model with an approximate mechanical torque offers excellent results.  相似文献   

17.
In this paper a novel model based on a geographic information system (GIS) is presented for the assessment of sustainable crop residue potentials. The approach is applied to analyse the amount and the spatial distribution (1 km × 1 km grid cells) of cereal straw, root crop and oil plant residues for five European regions, considering spatially differentiated environmental sustainability issues, i.e. organic carbon content in topsoil, soil erodibility, and protected areas. The maximum sustainable residue potential varies strongly between the regions and residue types. In the scenarios Basis and Restrict, it accounts for 45–59% and 24–48% of the theoretical potential respectively without considering competing uses. Among the crop residues, cereal straw shows the highest energy potential in all regions under investigation. In terms of wet mass it accounts for 3.7 Mio. twet/a in North Rhine-Westphalia, 1.6 Mio. twet/a in Île-the-France, 1.2 Mio. twet/a in Wallonia, 0.9 Mio. twet/a in West Midlands, and 0.3 Mio. twet/a in South Netherlands (scenario Basis). Our survey shows that spatially differentiated potential estimations and the inclusion of crop residues other than cereal straw are urgently needed to improve the present rough estimations for crop residues which can be used in a sustainable way. The rather high spatial resolution of our analyses particularly allows for the support of regional stakeholders and prospective investors when it comes to questions of regional availability of biomass resources, transport distances to biomass conversion plants, and identification of suitable plant sites and sizes, respectively.  相似文献   

18.
Increasing penetrations of intermittent renewable energy resources will require additional power system services. California recently adopted an energy storage mandate to support its renewable portfolio standard, which requires 33% of delivered energy from renewables by 2020. The objective of this paper is to estimate the amount of energy storage that could be provided by residential thermostatically controlled loads, such as refrigerators and air conditioners, and the amount of revenue that could be earned by loads participating in ancillary services markets. We model load aggregations as virtual energy storage, and use simple dynamical system models and publicly available data to generate our resource and revenue estimates. We find that the resource potential is large: 10–40 GW/8–12 GWh, which is significantly more than that required by the mandate. We also find that regulation and spinning/non-spinning reserve revenues vary significantly depending upon type of load and, for heat pumps and air conditioners, climate zone. For example, mean regulation revenues for refrigerators are $11/year, for electric water heaters are $24/year, for air conditioners are $0-32/year, and for heat pumps are $22–56/year. Both consumer choices, such as appliance settings, and policy, such as the design of ancillary service compensation and appliance standards, could increase revenue potentials.  相似文献   

19.
The Chinese government has made an important effort to diversify the country's energy mix and exploit different sources of renewable energy. Although China's installed wind power capacity has undergone a dramatic expansion over the past six years, the electricity generated from wind power has not increased as expected. Meanwhile, operational risks, such as high generation cost, mismatch between capacity and generation, intermittent wind power generation, power grid construction lag, deficient policy, and operation mechanism, have become increasingly prominent. If not controlled, these risks will negatively affect wind power development in China. Therefore, this paper established a quantitative analysis model of wind power operation management risk from two aspects, feed-in tariff and grid electricity (electricity being connected to the grid), based on an analysis of wind power operation management risk in China. Moreover, this study quantitatively assessed the risk of the operational management of a wind farm in Inner Mongolia. Finally, corresponding risk control strategies for the healthy development of wind power generation in China were proposed.  相似文献   

20.
Renewable energy resources, such as wind, are available worldwide. Locating areas with high and continual wind sources are crucial in pre-planning of wind farms. Vast offshore areas are characterized by higher and more reliable wind resources in comparison with continental areas. However, offshore wind energy production is in a quite preliminary phase. Elaborating the potential productivity of wind farms over such areas is challenging due to sparse in situ observations. The Mediterranean basin is not an exception. In this study we are proposing numerical simulations of near-surface wind fields from regional climate models (RCMs) in order to obtain and fill the gaps in observations over the Mediterranean basin. Four simulations produced with two regional climate models are examined here. Remote sensing observations (QuikSCAT satellite) are used to assess the skill of the simulated fields. A technique for estimating the potential energy from the wind fields over the region is introduced. The wind energy potential atlas and the map of a wind turbine's functional range are presented, locating the potentially interesting sub-regions for wind farms. The ability of models to reproduce the annual cycle and the probability density function of wind speed anomalies are detailed for specified sub-regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号