首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article summarizes an experimental study on the mechanical and dynamic mechanical behavior of sisal fiber reinforced HDPE composites. Variations in mechanical strength, storage modulus (E′), loss modulus (E″), and damping parameter (tan δ) with the addition of fibers and coupling agents were investigated. It was observed that the tensile, flexural, and impact strengths increased with the increase in fiber loading up to 30%, above which there was a significant deterioration in the mechanical strength. Further, the composites treated with MAPE showed improved properties in comparison with the untreated composites. Dynamic mechanical analysis data also showed an increase in the storage modulus of the treated composites The tan δ spectra presented a strong influence of fiber content and coupling agent on the α and γ relaxation process of HDPE. The thermal behavior of the composites was evaluated from TGA/DTG thermograms. The fiber–matrix morphology in the treated composites was confirmed by SEM analysis of the tensile fractured specimens. FTIR spectra of the treated and untreated composites were also studied, to ascertain the existence of type of interfacial bonds. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3306–3315, 2006  相似文献   

2.
The effect of atmospheric air plasma treatment of jute fabrics on the mechanical properties of jute fabric reinforced polyester composites was investigated. The jute fabrics were subjected to different plasma powers (60, 90, and 120 W) for the exposure times of 1, 3, and 6 min. The effects of plasma powers and exposure times on interlaminar shear strength, tensile strength, and flexural strength of polyester based composites were evaluated. The greatest ILSS increase was about 171% at plasma power of 120 W and exposure time of 6 min. It is inferred that atmospheric air plasma treatment improves the interfacial adhesion between the jute fiber and polyester. This result was also confirmed by scanning electron microscopy observations of the fractured surfaces of the composites. The greatest tensile strength and flexural strength values were determined at 120 W for 1 min and at 60 W for 3 min, respectively. Moreover, it can be said that atmospheric air plasma treatment of jute fibers at longer exposure times (6 min) made a detrimental effect on tensile and flexural properties of jute‐reinforced polyester composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Fiber‐reinforced polymeric composites (FRPCs) have emerged as an important material for automotive, aerospace, and other engineering applications because of their light weight, design flexibility, ease of manufacturing, and improved mechanical performance. In this study, glass‐epoxy (G‐E) and silicon carbide filled glass‐epoxy (SiC‐G‐E) composite systems have been fabricated using hand lay‐up technique. The mechanical properties such as tensile strength, tensile modulus, elongation at break, flexural strength, and hardness have been investigated in accordance with ASTM standards. From the experimental investigations, it has been found that the tensile strength, flexural strength, and hardness of the glass reinforced epoxy composite increased with the inclusion of SiC filler. The results of the SiC (5 wt %)‐G‐E composite showed higher mechanical properties compared to G‐E system. The dielectric properties such as dielectric constant (permittivity), tan delta, dielectric loss, and AC conductivity of these composites have been evaluated. A drastic reduction in dielectric constant after incorporation of conducting SiC filler into epoxy composite has been observed. Scanning electron microscopy (SEM) photomicrographs of the fractured samples revealed various aspects of the fractured surfaces. The failure modes of the tensile fractured surfaces have also been reported. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Short jute fiber‐reinforced polypropylene (PP) composites were prepared using a high‐speed thermokinetic mixer. A compatibilizer was used to improve the molecular interaction between jute and PP. Both the percent weight fraction of the jute fiber and compatibilizer were varied to study the dynamic mechanical thermal (DMT) properties. Dynamic parameters such as storage flexural modulus (E′), loss flexural modulus (E″), storage shear modulus (G′), loss shear modulus (G″), and loss factor or damping efficiency (tan δ) were determined in a resonant frequency mode. The transition peak nature, amplitude, and temperature of E′, E″, G′, G″, and tan δ of different compositions were shown to indicate possible improvements of molecular interaction in the presence of a compatibilizer. The modulus retention term, a plot of the reduced modulus with the weight fraction of the jute fiber, also indicate its improvement. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 531–539, 1999  相似文献   

5.
An experimental investigation into the influence of incorporation of graphene oxide (GO) and fly ash cenospheres (FACs) on the mechanical properties of epoxy resin (EP) composites. Two fillers were studied: GO-FAC hybrid and single GO. The GO-FAC hybrid was synthesized using a solution blending method, and characterized by FTIR, XRD, and scanning electron microscope (SEM). The modified EP composite specimens were prepared by adding different contents of GO and GO-FAC hybrid. The investigation showed that the FACs were successfully carried on the GO layer. The experimental data indicated that the addition of GO-FAC hybrid effectively improved the tensile property and the wear resistance of the EP composites, superior to the addition of single GO samples. The best tensile properties and lowest wear rate of EP composites were obtained when the hybrid content was 0.5 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47173.  相似文献   

6.
Jute slivers were acetylated in pilot scale following a no catalyst‐no solvent method at 120°C for 2 h. The weight % gain was found to be 11.37. Different jute boards were pressed under heat and pressure using acetylated jute sliver and urea formaldehyde resin. Neutral salt (NaCl), acid salt (NH4Cl), and melamine powder were used separately for curing urea formaldehyde. For comparison purposes, control boards were also prepared using nonacetylated slivers. The boards were tested for water soaking, cyclic water soaking, and cyclic humidity to see the effect of acetylation on dimensional stabilization. This chemical modification was found to improve the dimensional stability to a great extent for NaCl and NH4Cl cured boards and to a less extent for a melamine‐cured one. Tensile and flexural strengths were tested by Instron before and after the cyclic tests. Retention values were found to be as high as 60% after cyclic water tests for acetylated boards and the same was as low as 24% for control boards. Dynamic parameters, such as storage flexural modulus (E′), loss flexural modulus (E"), and loss factor or damping efficiency (tan δ) were determined in a fixed‐frequency mode. Dynamic mechanical study revealed that tan δ peaks were lowered due to increased bulkiness of the fiber after acetylation and thus restricted mobility. A tiny additional peak was also visible at ∼90°C beside the main peak at ∼125°C for boards with modified slivers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 935–944, 1999  相似文献   

7.
In this study, randomly oriented short jute/bagasse hybrid fiber‐reinforced epoxy novolac composites were prepared by keeping the relative volume ratio of jute and bagasse of 1:3 and the total fiber loading 0.40 volume fractions. The effect of jute fiber hybridization and different layering pattern on the physical, mechanical, and thermal properties of jute/bagasse hybrid fiber‐reinforced epoxy novolac composites was investigated. The hybrid fiber‐reinforced composites exhibited fair water absorption and thickness swelling properties. To investigate the effect of layering pattern on thermomechanical behavior of hybrid composites, the storage modulus and loss factor were determined using dynamic mechanical analyzer from 30 to 200°C at a frequency of 1 Hz. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy. The morphological features of the composites were well corroborated with the mechanical properties. Thermogravimetric analysis indicated an increase in thermal stability of pure bagasse composites with the incorporation of jute fibers. The incorporation of hybrid fibers results better improvement in both thermal and dimensional stable compared with the pure bagasse fiber composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
The present work accounts for the influence of aromatic amide oligomers on the inherent brittleness of cured epoxy. Aromatic and aliphatic amine-terminated amide oligomers have been prepared by condensation polymerization using isophthaloyl dichloride and two different amines. The oligomers have been characterized using Fourier transform infrared spectroscopy and wide angle X-ray diffraction analysis. Diglycidyl ether of bisphenol A (DGEBA) is cured with a diamine (4,4′-oxydianiline) by using different weight ratio of oligomers. The FTIR of cured epoxy shows ring opening by the disappearance of oxirane ring peak at 913 cm−1, whereas X-ray diffraction shows its amorphous phase in the cured state. The thermogravimetric analysis of the resultant composites shows that the thermal stability slightly decreases (467–454 °C) with increasing the oligomer content from 5 to 25 wt %, whereas the mechanical parameters (Young's modulus, tensile strength, impact strength, and elongation at break) increase with increase in the oligomer content. DMA shows lower tanδ values for aliphatic amine-terminated oligomers for cured epoxy. Two-phase surface morphology is observed through scanning electron microscopy. Owing to their high mechanical and thermal properties, aromatic amides have observed to greatly influence the mechanical properties of cured epoxy, particularly its brittleness. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48404.  相似文献   

9.
Composites with different jute fabric contents and polypropylene (PP) were prepared by compression molding. The composite tensile modulus increased as the fiber content increased, although the strain at break decreased due to the restriction imposed on the deformation of the matrix by the rigid fibers. Moreover, and despite the chemical incompatibility between the polar fiber and the PP matrix, the tensile strength increased with jute content because of the use of long woven fibers. The interfacial adhesion between jute and PP was improved by the addition of different commercial maleated polypropylenes to the neat PP matrix. The effect of these coupling agents on the interface properties was inferred from the resulting composite mechanical properties. Out‐of‐plane instrumented falling weight impact tests showed that compatibilized composites had lower propagation energy than uncompatibilized ones, which was a clear indication that the adhesion between matrix and fibers was better in the former case since fewer mechanisms of energy propagation were activated. These results are in agreement with those found in tensile tests, inasmuch as the compatibilized composites exhibit the highest tensile strength. Scanning electron microscopy also revealed that the compatibilized composites exhibited less fiber pullout and smoother fiber surface than uncompatibilized ones. The thermal behavior of PP–compatibilizer blends was also analyzed using differential scanning calorimetry, to confirm that the improvements in the mechanical properties were the result of the improved adhesion between both faces and not due to changes in the crystallinity of the matrix. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
Glass and carbon fibre reinforced epoxy composites were fabricated for N,N,N′,N′-tetraglycidyl-4,4′-diaminodiphenyl methane (TGDDM) and its formulated systems with tri- and di-functional reactive epoxy diluents using 30% diaminodiphenyl sulphone (DDS) as a curing agent. The epoxy laminates were evaluated for their physical, chemical and mechanical properties [at room (26°C) and high (100°C) temperatures]. A marginal increase (<20%) in the mechanical properties of CFRP was found compared with GFRP laminates. Incorporation of epoxy diluents altered the mechanical properties of the composites significantly. The incorporation of triglycidyl-4-aminophenol diluent to TGDDM systems resulted in an improvement in mechanical properties of about 2–6%.  相似文献   

11.
In the present study, randomly aligned jute fiber/poly(lactic acid) (PLA) and two-directionally aligned jute fabric/PLA green composites with jute (50% by weight) treated with electron beam at different dosages (0, 5, 10, 30, 50, and 100?kGy) were fabricated by compression molding technique and the effect of electron beam treatment on their thermal properties was investigated in terms of thermal expansion, thermal stability, dynamic mechanical thermal property, and heat deflection temperature (HDT). The dynamic storage modulus and HDT of neat PLA were significantly increased by incorporating jute fibers or fabrics into PLA, whereas the coefficient of thermal expansion (CTE) and the damping property were decreased, reflecting the enhancement in the interfacial adhesion between the jute and the PLA by electron beam treatment with an optimal dosage of 10?kGy and the reinforcing effect by jute. The result exhibited that the thermal stability, storage modulus, and HDT of jute/PLA green composites were highest with the electron beam irradiation of jute at 10?kGy and lowest at 100?kGy, whereas the CTE and tan δ were lowest at 10?kGy and highest at 100?kGy. The thermal behavior of random jute/PLA green composites shows a similar tendency to that of 2D jute/PLA counterparts and the influence of electron beam irradiation on the thermal properties studied was consistent with each other. The thermomechanical analysis, dynamic mechanical thermal analysis, thermogravimetric analysis, and HDT results were in agreement with each other, showing a comparable effect of electron beam irradiation on composites thermal characteristics.  相似文献   

12.
The characteristics of sorption and diffusion of water in an amine‐cured epoxy system based on tetraglycidyl diaminodiphenylmethane and a novolac glycidyl ether resin were studied as a function both of the polymer microstructure, known from previous works, and the temperature. Water‐sorption experiments and dynamic mechanical analysis (DMA) were performed. Tensile stress–strain and Rockwell hardness tests were conducted to investigate the effects of absorbed water on the mechanical properties of the material. Competing effects of the sorption of water in the free volume and of strong interactions between water molecules and polar groups of the network were used to explain the diffusional behavior observed, which followed Fick's second law. DMA analysis seemed to be sensitive to the water effects and the viscoelastic behavior was related both to the water‐sorption processes and to the microstructure of the system. An important impact of water uptake on the tensile properties at break was also appreciated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 71–80, 2001  相似文献   

13.
The growing global concern over environment protection has led to the application of natural fiber reinforced polymer composites as alternative materials in manufacturing sectors. Various natural fibers are therefore being explored for reinforcement of polymer matrices. In the present work, murta bast fibers of varying length and weight percent are mixed randomly with the epoxy matrix and the composites are prepared from these mixtures by using the hand lay‐up method. The composites are characterized on the basis of density, thermal gravimetric analysis, infrared spectroscopy, scanning electron microscopy, tensile strength, flexural strength, compressive strength, impact strength, and Rockwell hardness studies. Tensile, flexural, and compressive moduli of the composites are also determined. The tensile strength of the composite was analyzed in the light of the different analytical models. Composites containing 30 weight % fibers of length 25 or 35 mm have the optimum mechanical properties. Murta bast fiber has the characteristics to become a good natural material for reinforcement. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44142.  相似文献   

14.
Changes occurring in jute fibers when treated with a 5% concentration of a NaOH solution for 0, 2, 4, 6, and 8 h were characterized by weight loss, linear density, tenacity, modulus, FTIR, and X‐ray measurements. A 9.63% weight loss was measured during 2 h of treatment with a drop of hemicellulose content from 22 to 12.90%. The linear density value showed no change until 2 h of treatment followed by a decrease from 33.0 to 14.5 denier by 56% after 6 h of treatment. The tenacity and modulus of the fibers improved by 45 and 79%, respectively, and the percent breaking strain was reduced by 23% after 8 h of treatment. X‐ray diffractograms showed increase in crystallinity of the fibers only after 6 h of treatment, while FTIR measurements showed much of the changes occurring by 2 h of treatment with an increased amount of OH groups. By measuring the rate of change of the modulus, tenacity, and percent breaking strain with the time of treatment, a clear transition was apparent at 4 h of treatment with the dissolution of hemicellulose, causing a weight loss and drop in the linear density before and development of crystallinity with an improvement in the properties after the transition time. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1013–1020, 2001  相似文献   

15.
This study is focused on the investigation of the effect of thermal shock cycling on the mechanical properties of cellulose based reinforced polymer composites. Polymer composites reinforced with olive pits powder at different filler‐volume fractions were manufactured. An increase in the bending modulus on the order of 48% was achieved. On the other hand, results showed that the bending strength remained almost unaffected from the amount of filler introduced. Next, the effect of thermal shock cycling on the mechanical behaviour of the thus manufactured composites was investigated. Theoretical predictions for both the properties variation with number of thermal shock cycles applied as well as with filler‐volume fraction were derived using the residual properties model (RPM) and the modulus predictive model (MPM), respectively. Predicted values were compared with respective experimental results. In all cases, a fair agreement between experimental findings and theoretical predictions was found. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The curing behavior of diglycidyl ether of bisphenol-A (DGEBA) with aromatic diamines having aryl–ether, aryl–ether–carbonyl, and aryl–ether–sulfone linkages was studied using differential scanning calorimetry (DSC). Aromatic diaminessuch as 1,3-bis(aminophenoxy)benzene (R), 1,4-bis(aminophenoxy)benzene (H),2,2′-bis[4-(4-aminophenoxy)phenyl]propane (B), 4,4′-bis(4-aminophenoxy)benzo-phenone (P), and bis[4-(4-aminophenoxy)phenyl]sulfone (S) were synthesized and characterized in the laboratory. Curing of DGEBA was done using both stoichiometric and nonstoichiometric amounts of diamines and the reaction was monitored using DSC. The reactivity of the diamines depended on the structure. The presence of electron withdrawing groups, even though significantly apart from the reaction site, reduced the nucleophilicity. No significant change was observed in the activation energy for curing, which was around 56 ± 2 kJ/mol. The glass transition temperature of the epoxy network depended on the structure and was higher when diamines P and S were used in comparison to diamines R, H, and B. The cured resins were stable up to 300°C, and maximum char yield (i.e., 32% at 600°C) was obtained in DGEBA cured with diamine P. The room temperature mechanical properties only changed marginally with the structure of the diamines. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1759–1766, 1998  相似文献   

17.
This research examines the effect of a microsize/nanosize talc filler on the physicochemical and mechanical properties of filled polypropylene (108MF10 and 33MBTU from Saudi Basic Industries Corp. and HE125MO grade from Borealis) composite matrices. A range of mechanical properties were measured [tensile properties, bending properties, fracture toughness, notched impact strength (at the ambient temperature and ?20°C), strain at break, and impact strength] along with microhardness testing and thermal stability testing from 40 to 600°C as measured by differential thermal analysis and thermogravimetric analysis. Increasing filler content lead to an increase in the mechanical strength of the composite material with a simultaneous decrease in the fracture toughness. The observed increase in tensile strength ranged from 15 to 25% (the maximum tensile strength at break was found to be 22 MPa). The increase in mechanical strength simultaneously led to a higher brittleness, which was reflected in a decrease in the mean impact strength from the initial 18 kJ/m2 (for the virgin polypropylene sample) to 14 kJ/m2, that is, a 23% decrease. A similar dependency was also obtained for the samples conditioned at ?20°C (a decrease of 12.5%). With increasing degree of filling of the talc–polypropylene composite matrix, the thermooxidative stability increased; the highest magnitude was obtained for the 20 wt % sample (decomposition temperature = 482°C, cf. 392°C for the virgin polymer). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Epoxy/polysufone (PSF) composites cured with 4,4'-diaminodiphenyl sulfone (DDS) and 4,4'-diaminodiphenyl methane (DDM) were fabricated, and the effect of dual curing reaction of diamines with epoxy on morphology, mechanical, and thermal performance was investigated. DSC results indicated that DDM was more reactive than DDS and the activation energy decreased with the rising of DDM content. Structures with small domain size at the early stage of phase separation were fixed by the fast epoxy-DDM reaction. When the DDM content was elevated to a high level, large dual structures were changed to fine bicontinuous structures, which was favorable to improve the mechanical property. The mechanical performance of epoxy composites was enhanced and the maximum values were achieved when the DDM/DDS ratio was located at 75/25 (PSF/DDS0.25-DDM0.75). The flexural and tensile strength relative to epoxy/DDM system were enhanced more than those relative to epoxy/DDS, while the increase in toughness was the opposite. TGA measurement showed that thermal stability of epoxy/PSF composites was improved because of the restricting effect of continuous PSF domains on thermal motion of epoxy. DMA analysis exhibited two relaxation peaks for PSF/DDS0.25-DDM0.75, which could be attributed to the formation of phase separated morphology and epoxy network with different cross-link density.  相似文献   

19.
Carbon nanotubes (CNTs) and graphene nanosheets (GNSs) were used as fillers in epoxy composites with the aim of increasing the electrical and thermal conductivities of the composites. The filling of pristine CNTs produced the highest electrical conductivity (σ), whereas a high CNT functionalization and the two‐dimensional planar structure of GNSs were promising for improving the thermal conductivity. A combination of CNTs and GNSs exploited the advantages of both. When the CNT fraction was larger than 50 wt %, a higher σ was obtained. When a small amount of functionalized CNTs was added to the GNSs, the thermal conductivity was also increased. The rheological measurements revealed the lowest complex viscosity for the GNS filling and showed the exciting advantages of an easy processing. As a result, the mixed filling also exhibited a much lower viscosity than the pure CNT fillings. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The role of persulfate-induced graft copolymerization of mixtures of acrylamide and methyl methacrylate at 50°C in modifying mechanical properties of jute fibers of different compositions was studied in a limited aqueous system following a pretreatment technique. Results obtained indicate that such a process admits a good scope for modification of mechanical properties of jute fiber depending on degree of grafting achieved and compositional variations of (1) the feed monomer mixture and (2) the multiconstituent jute itself, consequent to selective removal of lignin and hemicellulose to different extents from the fiber. Low to moderate removal of hemicellulose is more effective than a similar degree of removal of lignin from jute in rendering the fiber more amenable to vinyl grafting using the mixed monomer system without being adversely affected with respect to tensile properties. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1139–1147, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号