首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites and hybrid composites were manufactured from renewable materials based on jute fibers, regenerated cellulose fibers (Lyocell), and thermosetting polymer from soybean oil. Three different types of jute fabrics with biaxial weave architecture but different surface weights, and carded Lyocell fiber were used as reinforcements. Hybrid composites were also manufactured by combining the jute reinforcements with the Lyocell. The Lyocell composite was found to have better mechanical properties than other composites. It has tensile strength and modulus of about 144 MPa and 18 GPa, respectively. The jute composites also have relatively good mechanical properties, as their tensile strengths and moduli were found to be between 65 and 84 MPa, and between 14 and 19 GPa, respectively. The Lyocell‐reinforced composite showed the highest flexural strength and modulus, of about 217 MPa and 13 GPa, respectively. In all cases, the hybrid composites in this study showed improved mechanical properties but lower storage modulus. The Lyocell fiber gave the highest impact strength of about 35 kJ/m2, which could be a result of its morphology. Dynamic mechanical analysis showed that the Lyocell reinforced composite has the best viscoelastic properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Composites (50 wt% fiber) of jute fiber reinforced polyvinyl chloride (PVC) matrix and E-glass fiber reinforced PVC matrix were prepared by compression molding. Mechanical properties such as tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of both types of composites was evaluated and compared. Values of TS, TM, BS, BM and IS of jute fiber/PVC composites were found to be 45 MPa, 802 MPa, 46 MPa, 850 MPa and 24 kJ/m2, respectively. It was observed that TS, TM, BS, BM and IS of E-glass fiber/PVC composites were found to increase by 44, 80, 47, 92 and 37.5%, respectively. Thermal properties of the composites were also carried out, which revealed that thermal stability of E-glass fiber/PVC system was higher. The interfacial adhesion between the fibers (jute and E-glass) and matrix was studied by means of critical fiber length and interfacial shear strength that were measured by single fiber fragmentation test. Fracture sides after flexural testing of both types of the composites were investigated by Scanning Electron Microscopy.  相似文献   

3.
Biocomposites developed from wheat gluten using water without any chemicals as plasticizer and jute fibers as reinforcement have much better flexural and tensile properties than similar polypropylene composites reinforced with jute fibers. Wheat gluten is an inexpensive and abundant co‐product derived from renewable resources and is biodegradable but non‐thermoplastic. Previous attempts at developing biocomposites from wheat gluten have used plasticizers such as glycerol or chemical modifications to make gluten thermoplastic. However, plasticizers have a considerably negative effect on the mechanical properties of the composites and chemical modifications make wheat gluten less biodegradable, expensive and/or environmentally unfriendly. In the research reported, we developed composites from wheat gluten using water as a plasticizer without any chemicals. Water plasticizes wheat gluten but evaporates during compression molding and therefore does not affect the mechanical properties of the composites. The effect of composite fabrication conditions on the flexural, tensile and acoustic properties was studied in comparison to polypropylene composites reinforced with jute fibers. Wheat gluten composites had flexural strength (20 MPa), tensile strength (69 MPa) and tensile modulus (7.7 GPa) values approximately twice those of polypropylene composites. Water is an effective plasticizer for wheat gluten and could be used to develop various types of inexpensive and biodegradable wheat gluten‐based thermoplastics. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Triglyceride oils derived from plants have been used to synthesize several different monomers for use in structural applications. These monomers have been found to form polymers with a wide range of physical properties. They exhibit tensile moduli in the 1–2 GPa range and glass transition temperatures in the range 70–120 °C, depending on the particular monomer and the resin composition. Composite materials were manufactured utilizing these resins and produced a variety of durable and strong materials. At low glass fiber content (35 wt %), composites produced from acrylated epoxidized soybean oil by resin transfer molding displayed a tensile modulus of 5.2 GPa, a flexural modulus of 9 GPa, a tensile strength of 129 MPa, and flexural strength of 206 MPa. At higher fiber contents (50 wt %) composites produced from acrylated epoxidized soybean oil displayed tensile and compression moduli of 24.8 GPa each, and tensile and compressive strengths of 463.2 and 302.6 MPa, respectively. In addition to glass fibers, natural fibers such as flax and hemp were used. Hemp composites of 20% fiber content displayed a tensile strength of 35 MPa and a tensile modulus of 4.4 GPa. The flexural modulus was ∼2.6 GPa and the flexural strength was in the range 35.7–51.3 MPa, depending on the test conditions. The flax composite materials had tensile and flexural strengths in the ranges 20–30 and 45–65 MPa, respectively. The properties exhibited by both the natural- and synthetic fiber-reinforced composites can be combined through the production of “hybrid” composites. These materials combine the low cost of natural fibers with the high performance of synthetic fibers. Their properties lie between those displayed by the all-glass and all-natural composites. Characterization of the polymer properties also presents opportunities for improvement through genetic engineering technology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 703–723, 2001  相似文献   

5.
Adding conductive carbon fillers to insulating thermoplastic polymers increases the resulting composite's electrical conductivity. Carbon nanotubes (CNTs) are very effective at increasing composite electrical conductivity at low loading levels without compromising composite tensile and flexural properties. In this study, varying amounts (2–8 wt %) of CNTs were added to polycarbonate (PC) by melt compounding, and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile and flexural properties. The percolation threshold was less than 1.4 vol % CNT, likely because of CNTs high aspect ratio (1000). The addition of CNT to PC increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 6 wt % (4.2 vol %) CNT in PC resin had a good combination of properties for electrical conductivity applications. The electrical resistivity and thermal conductivity were 18 Ω‐cm and 0.28 W/m · K, respectively. The tensile modulus, ultimate tensile strength (UTS), and strain at UTS were 2.7 GPa, 56 MPa, and 2.8%, respectively. The flexural modulus, ultimate flexural strength, and strain at ultimate flexural strength were 3.6 GPa, 125 MPa, and 5.5%, respectively. Ductile tensile behavior is noted in pure PC and in samples containing up to 6 wt % CNT. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Jute fabrics/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 20–60 wt%. Composites were subjected to mechanical, thermal, water uptake and scanning electron microscopic (SEM) analysis. Composite contained 50 wt% jute showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the 50% jute content composites were found to be 85 MPa, 1.25 GPa, 140 MPa and 9 GPa and 9.5 kJ/m2, respectively. Water uptake properties at room temperature were evaluated and found that the composites had lower water uptake compared to virgin matrix.  相似文献   

7.
Jute fabric-reinforced poly(caprolactone) biocomposites (30–70% jute) were fabricated by compression molding. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the non-irradiated composites (50% jute) were found to be 65 MPa, 0.75 GPa, 75 MPa, 4.2 GPa and 6.8 kJ/m2, respectively. The composites were irradiated with gamma radiation at different doses (50–1000 krad) at a dose rate of 232 krad/hr and mechanical properties were investigated. The irradiated composites containing 50% jute showed improved physico-mechanical properties. The degradation properties of the composites were observed. The morphology was evaluated by scanning electron microscope.  相似文献   

8.
In this study, the jute/polypropylene nonwoven reinforced composites were prepared using film stacking method. The surface of jute fibers was modified using alkali treatment. These alkali treated jute fiber nonwoven composites were analyzed for their tensile and flexural properties. Increasing the amount of jute fibers in the nonwovens has improved the mechanical properties of their composites. The effect of stacking sequence of preferentially and nonpreferentially aligned nonwovens within the composites was also investigated. The flexural and tensile moduli of composites were found to be significantly enhanced when nonwovens consisting of preferentially and nonpreferentially aligned jute fibers were stacked in an alternate manner. The existing theoretical models of tensile modulus of fiber reinforced composites have been analyzed for predicting the tensile modulus of nonwoven composites. In general, a good agreement was obtained between the experimental and theoretical results of tensile modulus of nonwoven composites. POLYM. COMPOS., 35:1044–1050, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   

10.
The development of high performance composites from a cheap natural fiber, jute, as reinforcement is particularly significant from an economic point of view. In this work, jute fiber-unsaturated polyester(GP) composites having appreciable mechanical properties were prepared by using solution impregnation and hot curing methods. Both unbleached (control) and bleached jute slivers with various percentages of fiber loadings were used to prepare the composites and were named JPH (C) i.e., Jute Polyester Hot Curing (control), and JPH (B) i.e., Jute Polyester Hot Curing (bleached), respectively. Mechanical properties such as tensile and flexural strain, toughness, and moduli of both the grades have been compared. Composites having 60 wt% of jute fiber yielded the best results. JPH (B) showed much better flexural properties than JPH (C), although the tensile properties of the latter were better. The inter-laminar shear strength (ILSS) of the JPH (B) was found to be higher than JPH (C). The nature of fiber-resin bonding was studied from scanning electron micrographs of the specimens subjected to tensile and flexural fracture. Dynamic mechanical properties were found to be very high, superior even to those of glass fiber reinforced composites. The flexural storage modulus was found to be 12.3 GPa at 30°C and to decrease slowly with temperature. The major finding in this work is the attainment of high mechanical properties of composite specimens with 60 wt %fiber loading. On a weight and cost basis, bleached jute fibres were found to be better reinforcements than other fibers with usual surface modification by coating or grafting processes.  相似文献   

11.
Natural fiber composites are known to have lower mechanical properties than glass or carbon fiber reinforced composites. The hybrid natural fiber composites prepared in this study have relatively good mechanical properties. Different combinations of woven and non‐woven flax fibers were used. The stacking sequence of the fibers was in different orientations, such as 0°, +45°, and 90°. The composites manufactured had good mechanical properties. A tensile strength of about 119 MPa and Young's modulus of about 14 GPa was achieved, with flexural strength and modulus of about 201 MPa and 24 GPa, respectively. For the purposes of comparison, composites were made with a combination of woven fabrics and glass fibers. One ply of a glass fiber mat was sandwiched in the mid‐plane and this increased the tensile strength considerably to 168 MPa. Dynamic mechanical analysis was performed in order to determine the storage and loss modulus and the glass transition temperature of the composites. Microstructural analysis was done with scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The aim of the present study was to investigate the physical and thermo-mechanical characterization of silicon carbide filled needle punch nonwoven jute fiber reinforced epoxy composites. The composite materials were prepared by mixing different weight percentages (0–15 wt.%) of silicon carbide in needle punch nonwoven jute fiber reinforced epoxy composites by hand-lay-up techniques. The physical and mechanical tests have been performed to find the void content, water absorption, hardness, tensile strength, impact strength, fracture toughness and thermo-mechanical properties of the silicon carbide filled jute epoxy composites. The results indicated that increase in silicon carbide filler from 0 to 15 wt.% in the jute epoxy composites increased the void content by 1.49 %, water absorption by 1.83 %, hardness by 39.47 %, tensile strength by 52.5 %, flexural strength by 48.5 %, and impact strength by 14.5 % but on the other hand, decreased the thermal conductivity by 11.62 %. The result also indicated that jute epoxy composites reinforced with 15 wt.% silicon carbide particulate filler presented the highest storage modulus and loss modulus as compared with the unfilled jute epoxy composite.  相似文献   

13.
In recent years, environmentally friendly materials have become popular because of the growing environmental demands in human society. Natural fibers are now widely used as reinforcements in polymer matrix composites for their various advantages such as low cost, light weight, abundant resources, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between the fibers and the thermoplastic matrix. In this paper, three methods, including (i) alkali treatment, (ii) alkali and methyl methacrylate (MMA) treatment, and (iii) alkali and polyamide (PA) treatment (APT), were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced polypropylene (PP) composites (JPCs). The mechanical properties of the JPCs were tested, and their impact fracture surfaces were observed. Infrared spectral analysis showed that MMA was grafted and that PA was coated onto the surface of jute fibers. Mechanical tests indicated that the three kinds of pretreated composites presented better mechanical properties than untreated composites. Among them, the APT composite had the best comprehensive properties. Compared with untreated composites, the tensile strength, flexural strength, and flexural modulus of APT composite were increased by 24.8, 31.3, and 28.4%, respectively. Analysis by scanning electron microscopy showed that better interfacial compatibility between jute fibers and PP occured in this kind of composite. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
Dicumyl peroxide (DCP) initiated reactive compatibilization of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV)/miscanthus fibers (70/30 wt %) based biocomposite was prepared in a twin screw extruder followed by injection molding. In the presence of DCP, both the flexural and the tensile strength of the PHBV/miscanthus composites were appreciably higher compared with PHBV/miscanthus composite without DCP as well as neat PHBV. The maximum tensile strength (29 MPa) and flexural strength (51 MPa) were observed in the PHBV/miscanthus composite with 0.7 phr DCP. The enhanced flexural and tensile strength of the PHBV/miscanthus/DCP composites are attributed to the improved interfacial adhesion by free radical initiator. Unlike flexural and tensile strength, the modulus of the PHBV/miscanthus/DCP composites was found to slightly lower than the PHBV/miscanthus composite. The modulus difference in the PHBV/miscanthus composite with and without DCP has good agreement with the observed crystallinity. However, the flexural and tensile modulus of all the prepared biocomposites was at least two fold higher than the neat PHBV. The storage modulus value of the PHBV/miscanthus and PHBV/miscanthus/DCP biocomposites follows similar trend like tensile and flexural modulus. The melting temperature and crystallization temperature of PHBV/DCP and PHBV/miscanthus/DCP samples were considerably lower compared with the neat PHBV and PHBV/miscanthus composites. The surface morphology revealed that the PHBV/miscanthus/DCP composites have good interface with less fiber pull‐outs compared with the corresponding counterpart without DCP. This suggests that the compatibility between the matrix and the fibers is enhanced after the addition of peroxide initiator. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44860.  相似文献   

15.
Bamboo fibers reinforced unsaturated polyester (UPE) composites were prepared by compression molding. Effects of fiber extraction, morphology, and chemical modification on the mechanical properties and water absorption of the bamboo fibers‐UPE composites were investigated. Results showed that the unidirectional original bamboo fibers resulting composites demonstrated the highest tensile strength, flexural strength, and flexural modulus; the 30–40 mesh bamboo particles resulting composites had the lowest tensile strength and flexural strength, but had comparable flexural modulus with that of chemical pulp fibers. The treatment of bamboo fibers with 1,6‐diisocyanatohexane (DIH) and 2‐hydroxyethyl acrylate (HEA) significantly increased the tensile strength, flexural strength and flexural modulus, and water resistance of the resulting composites. Fourier Transform Infrared and X‐ray photoelectron spectroscopy analyses showed that DIH and HEA were covalently bonded onto bamboo fibers. Scanning electron microscopic images of the fractured surfaces of the composites showed that the treatment of bamboo fibers greatly improved the interfacial adhesion between the fibers and UPE resins. The water absorption kinetics of the composites was also investigated; and the results showed that the water absorption of the composites fitted Fickian behavior well. POLYM. COMPOS., 37:1612–1619, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
The effect of atmospheric air plasma treatment of jute fabrics on the mechanical properties of jute fabric reinforced polyester composites was investigated. The jute fabrics were subjected to different plasma powers (60, 90, and 120 W) for the exposure times of 1, 3, and 6 min. The effects of plasma powers and exposure times on interlaminar shear strength, tensile strength, and flexural strength of polyester based composites were evaluated. The greatest ILSS increase was about 171% at plasma power of 120 W and exposure time of 6 min. It is inferred that atmospheric air plasma treatment improves the interfacial adhesion between the jute fiber and polyester. This result was also confirmed by scanning electron microscopy observations of the fractured surfaces of the composites. The greatest tensile strength and flexural strength values were determined at 120 W for 1 min and at 60 W for 3 min, respectively. Moreover, it can be said that atmospheric air plasma treatment of jute fibers at longer exposure times (6 min) made a detrimental effect on tensile and flexural properties of jute‐reinforced polyester composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Flax fiber‐reinforced polylactic acid (PLA) biocomposites were made using a new technique incorporating an air‐laying nonwoven process. Flax and PLA fibers were blended and converted to fiber webs in the air‐laying process. Composite prepregs were then made from the fiber webs. The prepregs were finally converted to composites by compression molding. The relationship between the main process variables and the properties of the biocomposite was investigated. It was found that with increasing flax content, the mechanical properties increased. The maximum tensile strength of 80.3 MPa, flexural strength of 138.5 MPa, tensile modulus of 9.9 GPa and flexural modulus of 7.9 GPa were achieved. As the molding temperature and molding time increased, the mechanical properties decreased. The thermal and morphological properties of the biocomposites were also studied. The appropriate processing parameters for the biocomposites were established for different fiber contents. POLYM. COMPOS., 34:1611–1619, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
Industrial hemp fibers were treated with a 5 wt % NaOH, 2 wt % Na2SO3 solution at 120°C for 60 min to remove noncellulosic fiber components. Analysis of fibers by lignin analysis, scanning electron microscopy (SEM), zeta potential, Fourier transform infrared (FTIR) spectroscopy, wide angle X‐ray diffraction (WAXRD) and differential thermal/thermogravimetric analysis (DTA/TGA), supported that alkali treatment had (i) removed lignin, (ii) separated fibers from their fiber bundles, (iii) exposed cellulose hydroxyl groups, (iv) made the fiber surface cleaner, and (v) enhanced thermal stability of the fibers by increasing cellulose crystallinity through better packing of cellulose chains. Untreated and alkali treated short (random and aligned) and long (aligned) hemp fiber/epoxy composites were produced with fiber contents between 40 and 65 wt %. Although alkali treatment generally improved composite strength, better strength at high fiber contents for long fiber composites was achieved with untreated fiber, which appeared to be due to less fiber/fiber contact between alkali treated fibers. Composites with 65 wt % untreated, long aligned fiber were the strongest with a tensile strength (TS) of 165 MPa, Young's modulus (YM) of 17 GPa, flexural strength of 180 MPa, flexural modulus of 9 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa m1/2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
One emerging market for thermally and electrically conductive resins is bipolar plates for use in fuel cells. Adding carbon fillers to thermoplastic resins increases the composite thermal and electrical conductivity. These fillers have an effect on the composite tensile and flexural properties, which are also important for bipolar plates. In this study, various amounts of three different types of carbon (carbon black, synthetic graphite particles, and carbon fibers) were added to Vectra A950RX liquid‐crystal polymer. In addition, composites containing combinations of fillers were also investigated via a factorial design. The tensile and flexural properties of the resulting composites were then measured. The objective of this study was to determine the effects and interactions of each filler with respect to the tensile and flexural properties. The addition of carbon black caused the tensile and flexural properties to decrease. Adding synthetic graphite particles caused the tensile and flexural modulus to increase. The addition of carbon fiber caused the tensile and flexural modulus and ultimate flexural strength to increase. In many cases, combining two different fillers caused a statistically significant effect on composite tensile and flexural properties at the 95% confidence level. For example, when 40 wt % synthetic graphite particles and 4 wt % carbon black were combined, the composite ultimate tensile and flexural strength increased more than what would be expected from the individual additive effect of each single filler. It is possible that linkages were formed between the carbon black and synthetic graphite particles that resulted in improved ultimate tensile and flexural strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D Cf/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the Cf/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of Cf/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the Cf/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号