首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Double cantilever beam fracture specimens were used to investigate rate dependent failures of model epoxy/steel adhesively bonded systems. Quasi-static tests exhibited time dependent crack growth and the maximum fracture energies consistently decreased with debond length for constant crosshead rate loading. It was also possible to cause debonding to switch between interfacial and cohesive failure modes by simply altering the loading rate. These rate dependent observations were characterized using the concepts of fracture mechanics. The time rate of change of the strain energy release rate, dG/dt, is introduced to model and predict failure properties of different adhesive systems over a range of testing rates. An emphasis is placed on the interfacial failure process and how rate dependent interfacial properties can lead to cohesive failures in the same adhesive system. Specific applications of the resulting model are presented and found to be in good agreement when compared with the experimental data. Finally, a failure envelope is identified which may be useful in predicting whether failures will be interfacial or cohesive depending on the rate of testing for the model adhesive systems.  相似文献   

2.
The peel strength of aluminium-aluminium joints bonded by an adhesive based on carboxylated nitrile rubber and chlorobutyl rubber was found to depend on surface topography and use of a silane primer. Anodization causes a marginal increase in bond strength while the silane primer improves the adhesive joint strength remarkably.

The peel strength was also found to be dependent on test conditions (test rate and temperature). The threshold peel strength value obtained by measurements at low peel rate and high test temperature was found to depend on the type of failure during peeling (cohesive or interfacial) which, in turn, is controlled by the presence of silica filler in the adhesive. Two different threshold values of peel strength were obtained: 60 N/m for interfacial failure (in silica-filled adhesive), 140 N/m for cohesive failure (in unfilled adhesive).  相似文献   

3.
Two major factors play an important part in improving adhesive bonding in crystalline polyphenyletherketone ( ) and amorphous polyphenylethersulfone ( ) polymer-to-metal joint systems: (1) the mechanical strength of reaction product layers formed at polymer/metal interfaces is greater than that of the polymer itself; and (2) the extent of mechanically weak Fe2O3 layers on interfacial metal surfaces, which should be minimized to avoid the undesirable cohesive failure mode through these layers. As a result, the most promising failure mechanism for good bond performance was the mixed cohesive failure modes in which separation occurred in both the polymer and adhesive layers at the polymer/metal interfaces.  相似文献   

4.
Double cantilever beam fracture specimens were used to investigate rate dependent failures of model epoxy/steel adhesively bonded systems. Quasi-static tests exhibited time dependent crack growth and the maximum fracture energies consistently decreased with debond length for constant crosshead rate loading. It was also possible to cause debonding to switch between interfacial and cohesive failure modes by simply altering the loading rate. These rate dependent observations were characterized using the concepts of fracture mechanics. The time rate of change of the strain energy release rate, dG/dt, is introduced to model and predict failure properties of different adhesive systems over a range of testing rates. An emphasis is placed on the interfacial failure process and how rate dependent interfacial properties can lead to cohesive failures in the same adhesive system. Specific applications of the resulting model are presented and found to be in good agreement when compared with the experimental data. Finally, a failure envelope is identified which may be useful in predicting whether failures will be interfacial or cohesive depending on the rate of testing for the model adhesive systems.  相似文献   

5.
Analysis by means of matrix method is presented on the phenomenon of peel adhesion for 90° peeling of adhesive tape. A model of framed structure was assumed to duplicate the viscoelastic behavior of the tape: The adhesive layer is composed of a network structure made by elastic members for lattice elements and viscous members for diagonal elements. Calculated force distribution near the bond boundary showed good agreement with the experimental results of Kaelble. It was also found that the curve of peel rate versus peel force for the cohesive failure occurred in the adhesive layer was S-shaped; the change of peel force was affected severely by particular range of peel rate. For the interfacial failure at the bound boundary, on the other hand, the peel force possessed a maximum value for medium peel rate. Predicted failure mode for the adhesive tape changed from cohesive failure to interfacial failure with increasing rate of separation. Analytical results for the dependences of thickness of flexible members and adhesive layers on peel forces showed qualitative correlation with the experimental results.  相似文献   

6.
Mixed-mode fracture of an adhesively-bonded structure made from a commercial adhesive and a dual-phase steel has been studied under different rates. Since mixed-mode fracture occurs along the interface between the steel and the adhesive, the cohesive parameters for the interface were required. The mode-II interfacial properties were deduced in earlier work. In this paper the mode-I interfacial toughness and the mode-I interfacial strength were determined at different rates. The mode-I interfacial strength was not affected by rate up to crack velocities at levels associated with impact conditions, and was essentially identical to the cohesive strength appropriate for crack growth within the adhesive layer. The mode-I toughness was reduced by about 40% when the crack propagated along the interface rather than within the adhesive. Furthermore, transitions to a brittle mode of failure occurred in a stochastic fashion, and were associated with a drop in interfacial toughness by a factor of about five. The mode-I interfacial parameters were combined with the previously-determined mode-II interfacial parameters within a cohesive-zone model to analyze the mixed-mode fracture of the joints which exhibited both quasi-static and unstable fracture. The mixed-mode model and the associated cohesive parameters for both quasi-static and unstable crack propagation provide bounds for predicting the behavior of the bonded joints under various rates of loading, up to the impact conditions that could be appropriate for automotive design.  相似文献   

7.
This paper presents a study on the effect of surface treatments on the mechanical behavior of adhesively bonded titanium alloy joints. Several different treatments were selected for the preparation of Ti-6Al-4V alloy faying surfaces, and bonded joints were fabricated using surface-treated titanium alloy substrates and a film adhesive. Tensile tests were performed on single-lap specimens to evaluate the joint strength and to assess the failure mode, i.e. cohesive failure, adhesive (interfacial) failure or a mix of both. Contact angle measurements were also carried out, and the surface free energies of titanium alloys and the thermodynamic works of adhesion for the adhesive/titanium alloy interfaces were obtained. A three-dimensional finite element analysis was used to predict the strength of the specimens exhibiting cohesive failure. In addition, an expression of the relationship between the joint strength corresponding to interfacial failure and the thermodynamic work of adhesion was introduced based on the cohesive zone model (CZM) concept. It is shown that two surface treatments, Itro treatment and Laseridge, lead to cohesive failure and a significant increase in the joint strength, and the numerically predicted strength values are fairly close to the experimental values. These surface treatments are possible replacements for the traditional surface treatment processes. For degreasing, emery paper abrasion, atmospheric plasma treatment, sulfuric acid anodizing, nano adhesion technology and high-power lasershot, the specimens fail at the adhesive/substrate interface and the joint strength increases linearly with the thermodynamic work of adhesion as expected from our CZM-based expression.  相似文献   

8.
A novel concept of tuning the fracture properties of the interface through the treatment process of the coupling layer according to the cohesive critical strain energy release rate of the epoxy is proposed for optimizing the joint strength between epoxy and copper substrate. In most coupling agent application recipes, the treatment condition design has omitted the influence of the fracture properties of the corresponding adhesive. Conceivably, excessive strengthening of the adhesive–substrate interface may not lead to optimal interfacial strength. Synergistic toughening of the interface takes place when there is simultaneous interfacial debonding and failure of adhesive under a comparable critical stress state. Under critical applied load, energy is concurrently dissipated through the fracture of the interface, the fracture in the adhesive, and possible non-reversible failure processes such as shear yielding or micro-cracking of the adhesive. These combined energy dissipation processes result in extensive energy absorption around the crack tip. The adhesive joint, therefore, becomes more crack resistant. In this study, the interfacial adhesion promotion concept with synergistic toughening was demonstrated using three different epoxy systems bonded to copper substrates modified by a thiol-based coupling layer. The coupling layer was formed by treating the copper substrate with a thiol-based coupling agent. Critical strain energy release rate of the treated tapered double cantilever beam samples in different treatment conditions was measured for each of the epoxy systems. From the failure path analysis, mixed interfacial and cohesive failure was observed. This observation indicated that extensive energy dissipation occurs around the crack tip that results in synergistic toughening of the interface. This work shows the significance of matching the fracture property of the coupling layer with the adhesive. Up to 2.3 times improvement in the critical strain energy release rate was achieved with optimized thiol treatment compared to non-optimized treatment.  相似文献   

9.
The stringiness of crosslinked polyacrylic pressure‐sensitive adhesive (PSA) was observed during 90° peeling under the constant peel load. The random copolymer of butyl acrylate with 5 wt % acrylic acid crosslinked by N,N,N′,N′‐tetraglycidyl‐m‐xylenediamine was used as PSA. All observed stringiness upon peeling was sawtooth‐shaped, but it could be classified into three types dependent on the degree of crosslinking. The typical sawtooth‐shaped stringiness with interfacial failure was observed at the relatively higher crosslinker content ranging from 0.008 to 0.016 chemical equivalents (Eq.), where the PSA has high cohesive strength and low interfacial adhesion. The frame formed at the front end of stringiness at the content ranging from 0.002 to 0.004 Eq. Sufficient interfacial adhesion and deformability generate large internal deformation of the PSA layer. Internal deformation occurred preferentially over peeling as a result of front frame formation. The mode of peeling was changed from cohesive failure to interfacial failure in this range of crosslinker content. The sawtooth‐shaped with cohesive failure was observed at the lower content ranging from 0 to 0.001 Eq. The PSA has high interfacial adhesion and low cohesive strength, and thus exhibited cohesive failure. The PSA after peeling remained in the shape of belts. It was found that the shape of stringiness is strongly dependent on the balance between the interfacial adhesion and the cohesive strength of PSA. When the sawtooth‐shaped stringiness with frame formed, the peeling rate was lowest. This means the peel strength should be the maximum in this shape of stringiness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40336.  相似文献   

10.
The mechanical behavior of glassy polymer bonds is examined with molecular dynamics simulations. We show that the interfacial strength of the bond in mode I (tensile) and mode II (shear) fracture is strongly influenced by the coupling between the adhesive and adherends as well as by the roughness of the substrate surface. Failure occurs at the substrate (interfacial failure) when the interaction is weak, and in the bulk (cohesive failure) when the interaction is strong. The transition from interfacial to cohesive failure under mode I loading is nearly unaffected by roughness, while roughness leads to a dramatic increase in interfacial strength under mode II loading. Stress mixity is another crucial parameter that determines whether the polymer fails through shear deformation or through cavitation and crazing. By varying the geometry of the adhesive bond, we illustrate different limiting behaviors of a rupturing film.  相似文献   

11.
The interface of the Kynar®-Nylon adhesive joint was examined by X-ray photoelectron spectroscopy. It was found that the failure was neither adhesive nor cohesive. XPS results indicated that the fracture path occurred through a weak boundary layer which migrated to the interface possibly during the bonding process. The weak boundary layer consists of molecules which have -(CH2)n and (CF2)n structural units which are probably present as low molecular weight impurities formed during the polymerization of vinylidene fluoride or subsurface contaminants in the samples. This work presents the first conclusive evidence that confirms the existence of a weak boundary layer in an adhesive joint.  相似文献   

12.
In this study, the adhesion properties of polyurethane (PUR) pressure-sensitive adhesive (PSA) were investigated. The PUR-PSA was prepared by the cross-linking reaction of a urethane polymer consisting of toluene-2,4-diisocyanate and poly(propylene glycol) components using polyisocyanate as a cross-linking agent. The peel strength increased with the cross-linking agent content and exhibited cohesive failure until the maximum value, after which it decreased with interfacial failure. The PUR-PSA exhibited frequency dependence of the storage modulus obtained from dynamic viscoelastic measurements, but did not show dependence of the tack on the rolling rate measured using a rolling cylinder tack test under the experimental conditions used, which is quite different from the acrylic block copolymer/tackifier system. The PUR-PSA showed strong contact time dependence of tack measured by a probe tack test. The tendency was significantly larger than for the acrylic block copolymer/tackifier system. Therefore, the storage modulus increased, whereas the interfacial adhesion seems to be decreased with increase in the rolling rate for this PUR-PSA system. It was estimated that the influence of rolling rate on the interfacial adhesion and the storage modulus was offset, and, as a result, the rolling cylinder tack did not exhibit rate dependency.  相似文献   

13.
The micro-fracture mechanism of peeling is studied by means of a “bond stress analyses” which permits direct measurement of the distribution of normal or “cleavage” type stresses localized at the propagating boundary of failure. Improved instrumentation now permits direct stress analysis over nearly three decades of peeling rate. Experimental stress distributions are presented for an acrylic adhesive peeled from stainless steel. This study covers the transition region from elastomeric to flow state response where the viscoelastic transition from apparent interfacial to cohesive failure is observed for this acrylic copolymer. The major features of the cleavage stress distribution are qualitatively interpreted in terms of a cavitation-filamentation model which describes entanglement slippage as the dominant rate factor for cleavage response.  相似文献   

14.
The authors have introduced the concept of peel stress relaxation during 180° peel testing of an aluminium-adhesive-aluminium joint in order to explore the correlation, if any, between relaxation phenomenon and performance of the adhesive joint. The adhesive is based on a self-vulcanizable rubber blend of chlorobutyl rubber and carboxylated nitrile rubber. Peel stress relaxation depends on moulding time, silica filler loading, test temperature and peel rate. Peel stress relaxation mechanism varies depending on whether the adhesive joint failure is cohesive or interfacial.  相似文献   

15.
The influence of diblock copolymer addition on the tack properties of a polyacrylic triblock copolymer/tackifier system was investigated. For this purpose, poly(methyl methacrylate)‐block‐poly(n‐butyl acrylate)‐block‐poly(methyl methacrylate) triblock copolymer (MAM) and a 1/1 blend with a diblock copolymer consisting of the same components (MA) were used as base polymers, and a tackifier was added in amounts ranging from 10 to 30 wt %. The temperature dependence of tack was measured by a probe tack test. The tack of MAM/MA at room temperature was significantly higher than that of MAM, and the improvement of MAM/MA upon the addition of the tackifier was higher than that of MAM. The peeling process at the probe/adhesive interface during the probe tack test was observed using a high‐speed microscope. It was found that for MAM/MA, cavitation was caused in the entire adhesive layer, and peeling initiation was delayed by the absorption of strain energy due to deformation of the adhesive layer. In contrast, for MAM, peeling progressed linearly from the edge to the center of the probe. The greater flexibility of the soft block chain in the diblock copolymer resulted in improved interfacial adhesion. 1H pulse nuclear magnetic resonance analysis showed that the addition of the tackifier improved the cohesive strength of the adhesive. Adhesion strength is affected by two factors: the development of interfacial adhesion and cohesive strength. In the MAM/MA/tackifier system, the presence of MA and the tackifier improved the interfacial adhesion and cohesive strength, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The role of tackifier in a pressure sensitive adhesive tape was investigated. For this purpose, a model pressure sensitive adhesive was prepared using an acrylic block copolymer consisting of poly(methyl methacrylate) and poly(butyl acrylate) as base polymer and a tackifier. The poly(butyl acrylate) oligomer was also used as a diluent to compare the effect on the adhesion properties. Tack was measured using a rolling tack tester in wide temperature and rolling rate ranges, and the master curve was made in accordance with the time–temperature superposition law. The tack increased and the failure mode varied from cohesive failure to interfacial failure with an increase in the rolling rate. The tack was higher in the tackifier added system than in the oligomer added system. From a dynamic mechanical analysis, the modulus at high temperature decreased by the addition of both tackifier and oligomer, however, the glass transition temperature of poly(butyl acrylate) and the modulus at low temperature increased only by the addition of tackifier. The dynamic viscoelastic properties were measured in wide temperature and frequency ranges, and the master curve was also made. The viscoelastic properties varied in the order of viscosity, rubbery and glassy with an increase in the deformation rate. It was clarified that the tack value and the failure mode were strongly dependent upon the viscoelastic properties of adhesive. Both tackifier and oligomer improves the mobility of base polymer, whereas, only tackifier increases the cohesive strength of base polymer.  相似文献   

17.
A serious limitation frequently encountered in the use of structural adhesives is the deleterious effect moisture has upon the strength of a bonded component, especially when the component is also subjected to conditions of relatively high stress and temperature. It is generally recognised that while the locus of failure of well prepared joints is invariably by cohesive fracture in the adhesive layer, after environmental attack it is via failure in the interfacial regions. This interfacial locus of failure focuses attention on interfacial fracture mechanical considerations. This paper reviews mechanisms of environmental failure and considers techniques for estimating and increasing the service-lifetimes of bonded components. Particular emphasis is given to the contribution from the application of continuum fracture mechanics concepts to the study of environmental attack on structural adhesive joints.  相似文献   

18.
The mechanical behaviour of bonded composite joints depends on several factors, such as the strength of the composite–adhesive interface, the strength of the adhesive and the strength of the composite itself. In this regard, a finite element model was developed using a combined interface–adhesive damage approach. A cohesive zone model is used to represent the composite–adhesive interface and a continuum damage model for the adhesive bondline. The influence of the composite–adhesive interfacial adhesion and the strength of the adhesive on the performance of a bonded composite single-lap joint was investigated numerically. A Taguchi analysis was conducted to rank the influence of material parameters on the static behaviour of the joint. It was found that the composite–adhesive interfacial fracture energy and the mechanical properties of the adhesive predominantly govern the static performance of the joints. A parametric study was performed by varying the most important material parameters, and a response surface equation is proposed to predict the joint strength. It is shown that the influence of experimental parameter variations, e.g. variation in adhesive curing and surface preparation conditions, can be numerically accommodated to investigate the static behaviour of bonded composite joints by combining finite element and statistical techniques. The methods presented could be used by practicing engineers to describe the failure envelope of adhesively bonded composite joints.  相似文献   

19.
Paint films although attached to a substrate on one side only may be subjected to stresses, comparable to those in structural adhesives. These stresses result from shrinkage during film formation and subsequent ageing, mechanical strains, relative thermal movements of film and substrate and from osmotic pressure due to soluble material under or within the film. The adhesive strength required to prevent detachment varies from very little for weak, highly porous coatings to 10,000 lb/in2 for tough coatings of high elastic modulus. Generally, adhesive strength both to the substrate and between coats in a paint system must exceed cohesive strength, under the conditions when failure is likely to develop. Dispersion and other forces, such as hydrogen bridging, between coatings and clean metal substrates should suffice to ensure adhesion but most practical surfaces carry contaminants, which interfere with wetting and intimacy of contact. Solvents and other low molecular weight components may also provide a weak interfacial layer, at least for a period after application. Modification of polymer structure to improve contaminant displacement and to increase polymer/substrate interaction forces, for example by the introduction of polar substituent or end groups will be discussed and potentialities of adhesion-promoting surface treatments reviewed.  相似文献   

20.
This paper presents an investigation of the durability of two aluminum-epoxy adhesive systems by means of open-faced peel specimens. A peel analysis model was used to determine the fracture energy from the peel data. Both wet and dry peel tests were conducted in order to distinguish between the reversible and the permanent effects of water. The effects of water on the cohesive properties of the adhesives were also assessed by tension tests. It was found that, for the two-part epoxy adhesive, which plasticized to a large extent, the peel testing should be carried out in a dry state to assess the interfacial weakening. It was also observed that the two-part adhesive was much stiffer in the dry, degraded state, and it was important to take account of such permanent changes in the cohesive properties associated with water uptake when determining the fracture energy from the peel data. In contrast, the one-part epoxy system did not suffer from appreciable cohesive changes, either reversible or permanent. In this case, both wet and dry failure loci were interfacial, and some of the interfacial damage was found to be reversible. Finally, surface analyses of the peel failure surfaces were carried out, and the formation of micro-debonds was identified as a possible mechanism of degradation for the two-part system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号