首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
汽车磁流变悬架垂直振动控制与试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
在对整车振动系统进行分解和简化的基础上,提出一种分级智能控制系统,设计了用仿人智能思想来在线修改模糊控制器参数的1/4车磁流变悬架振动模糊自适应局部控制器,设计了整车悬架垂直振动的协调控制规则用于调整4个局部控制器的输出值.在MATLAB平台上对分级控制系统进行仿真,构建了磁流变悬架系统垂直振动的整车测控与评价系统,在不同条件下进行了道路试验.相对于被动悬架,分级控制的磁流变悬架使汽车底板振动加速度下降了约15%,使座椅振动加速度下降了约23%,表明用分级控制来减小磁流变悬架系统的垂直振动是可行的,可降低因模型的简化带来的影响,提高汽车的平顺性.  相似文献   

2.
基于磁流变减振器的汽车悬架振动控制   总被引:5,自引:1,他引:5  
分析了磁流变减振器特性,为了抑制汽车磁流变悬架的振动,提出了一种含有控制级和协调级的分级模糊控制。在控制级,把天棚、地棚混合控制策略与模糊智能控制策略相结合,设计了1/4车辆垂直振动的半主动模糊智能控制器;在协调级,设计了整车控制的协调器,根据反馈变量对整车4个独立模糊智能控制器输出参数进行调整。把某微型汽车的4只被动减振器改装成磁流变减振器,搭建了磁流变悬架全车测控系统,运用设计的分级模糊控制器,进行了平顺性随机输入实车道路试验。试验结果表明对汽车磁流变悬架的垂直振动进行分级模糊控制是可行的,能有效提高汽车的乘坐舒适性和操纵稳定性。  相似文献   

3.
冯勇  吴凯  刘梦安 《汽车零部件》2012,(5):50-54,69
选择了某微型汽车悬架的磁流变减震器为研究对象,运用汽车动力学理论建立了1/4汽车半主动悬架控制系统动力学模型,基于模糊PID控制算法设计了模糊PID控制器.车辆在不同路面输入谱和不同行驶速度下,以悬架的簧载质量加速度、悬架动挠度和轮胎动载荷3个基本参数来表征磁流变半主动悬架系统的振动特性,运用Matlab/Simulink软件对该悬架系统进行仿真研究,仿真结果表明,当汽车在不同等级的路面上行驶时,随着车速的提高,采用模糊PID控制半主动悬架汽车的簧载质量加速度和悬架动挠度的幅值相对于被动悬架均明显减小,表现出了良好的控制效果.轮胎动载荷与被动悬架的幅度大体相当,偶尔还比被动悬架幅值高,但综合来看,模糊PID控制器能更好地减小汽车振动,进一步提高汽车的乘坐舒适性.结果同时也说明了模糊PID控制具有很好的鲁棒性.采用磁流变减振器的半主动悬架系统有效地改善了汽车乘坐舒适性和操纵稳定性.  相似文献   

4.
在分析磁流变减振器的结构与原理的基础上,建立起较为简化的汽车磁流变减振器数学模型。同时,建立了1/4汽车半主动悬架系统动力学模型及路面谱模型;分别设计了基于磁流变半主动悬架系统的天棚控制器、地棚控制器、PID控制器及模糊控制器,并利用Matlab/Simulink软件进行了仿真试验对比研究。在天棚控制策略下,车身加速度降低16.32%,悬架动挠度降低16.91%;在地棚控制下,车身加速度降低11.29%,悬架动挠度降低2.94%;在PID控制下,车身加速度降低79%,悬架动挠度反而上升73%;在模糊控制下,车身加速度降低21%,悬架动挠度降低12%,轮胎动载荷降低5%。结果表明,模糊控制磁流变半主动悬架有效减小了车身加速度、悬架动挠度、轮胎动载荷,明显地提高了汽车乘坐舒适性和操纵稳定性。  相似文献   

5.
为提高车辆座椅悬架减振性能,建立了简化的三自由度车辆座椅悬架模型,结合模糊控制与PID控制理论提出了座椅悬架自适应模糊PID控制方法。该方法中以座椅垂直振动速度的误差为控制参量设计了PID控制器,将座椅垂直振动速度误差及误差变化率作为模糊控制器的输入变量,利用模糊控制规则对PID控制器参数进行在线自调整。以C级路面白噪声随机信号为输入,利用MATLAB/Simulink对自适应模糊PID控制器进行了仿真。结果表明:相对于不加控制和PID控制的座椅悬架系统,自适应模糊PID控制方法可以明显改善座椅质心处的垂直振动加速度。  相似文献   

6.
为提高汽车主动悬架减振性能,建立了简化的1/4车体二自由度主动悬架模型,分别结合PID控制、模糊控制和自适应模糊PID控制方式设计了1/4车二自由度主动悬架控制器。以C级路面白噪声随机信号为激励,利用MATLAB/Simulink软件对车辆主动悬架的三种控制方式进行了仿真,选取车身垂直振动速度及加速度、悬架动挠度和轮胎动载荷等指标进行控制效果评价。结果表明:基于自适应模糊PID控制的主动悬架较其他控制方式能明显改善汽车行驶平顺性,可有效抑制汽车主动悬架的振动。  相似文献   

7.
为了提高汽车悬架系统工作性能,对磁流变阻尼器半主动悬架控制系统进行了研究。首先,基于磁流变阻尼器工作原理,将永磁体与电磁阀引入其中,设计新型磁流变阻尼器并建立了仿真模型,示功特性试验结果表明,所设计的新型阻尼器可以满足汽车悬架的使用要求,同时,速度特性试验表明所建立的阻尼器模型具有较高的可信度;其次,基于牛顿定律建立了7自由度整车悬架模型;为了提高悬架控制效果,在对常规鱼群算法进行改进的基础上,设计了适合汽车悬架系统最优控制器的鱼群算法,实现了两者的集成控制;最后,进行了仿真试验。试验结果表明,与被动悬架相比,基于鱼群最优控制算法控制的汽车车身质心垂直加速度、俯仰角加速度、侧倾角加速度分别减小了38.95%、35.12%、35.98%,有效地提高了汽车的动力学性能。  相似文献   

8.
根据变论域方法对经典模糊控制算法进行了改进,提出了悬架阻尼力变论域模糊控制算法。根据悬架阻尼控制力与磁流变阻尼器输出阻尼力的力误差,设计了磁流变阻尼器驱动电流控制方法。由汽车结构振动模糊控制子系统和磁流变阻尼器驱动电流控制子系统构建了磁流变半主动悬架控制器,用模糊集语言赋值系数反映了悬架伸张行程和压缩行程不对称阻尼控制力的关系。利用二自由度车辆振动系统简化模型和磁流变阻尼器简化力学模型及其参数,确定了控制器结构及其参数。研究结果袁明,该方法具有较好的控制精度和适应能力。  相似文献   

9.
为了提高汽车的乘坐舒适性,抑制因路面不平引起的汽车振动,利用多体动力学软件ADAmS建立某SUV整车模型,利用mATLAB设计了一种BP神经网络模糊PID主动悬架控制器,并与模糊PID控制器进行仿真对比,深入研究模糊PID控制器及BP神经网络模糊PID主动悬架控制器控制效果。研究发现,采用提出的BP神经网络模糊PID主动控制策略后,汽车悬架系统的车身加速度、悬架动挠度、轮胎动变形分别比被动控制下降了36.3%、25.1%和12.0%,而采用模糊PID控制策略只下降了34.3%、19.1%和10.4%。这说明所提出的BP神经网络模糊PID控制策略具有更加优异的主动悬架控制效果。  相似文献   

10.
汽车制动系统性能的好坏关系着行车安全,悬架性能的好坏关系着汽车的平顺性等。建立了四自由度整车集成系统动力学模型,分别设计了ABS和磁流变半主动悬架的模糊控制器,并提出一种基于遗传算法的联合控制优化方法来对两个控制器的参数进行协调的调节和控制,以提高制动性能、改善悬架性能,使整体系统的控制目标达到最优,最后利用MATLAB进行仿真分析,结果表明,采用联合优化控制策略提高了汽车的制动性能,缩短了汽车的制动距离,且悬架的性能得到了改善,比两个子系统单独控制时的性能优越。  相似文献   

11.
为了改善车辆平顺性和行驶安全性,设计了一种基于单出杆式磁流变减振器的汽车半主动悬架。在分析传统的磁流变减振器力学模型的基础上,提出了一种改进的磁流变减振器多项式模型,试制了磁流变减振器样机,进行了磁流变减振器的力学特性试验,设计了半主动悬架天棚控制器、地棚控制器和LQG控制器,进行了不同控制策略的对比仿真分析,开发了磁流变半主动悬架试验测试系统,开展了该磁流变半主动悬架的LQG控制台架试验测试。结果表明,所研制的磁流变减振器耗能效果良好,能够最大限度地发挥振动衰减功能。与被动悬架相比,在4Hz和5Hz正弦激励下磁流变半主动悬架的簧载质量加速度分别降低15.80%和23.36%,在随机路面激励下簧载质量加速度降低19.46%。  相似文献   

12.
针对履带车行驶路况的多样性、复杂性以及自身结构的特殊性提出了一种基于磁流变阻尼器的履带车辆半主动悬架智能复合控制方法。以1/2履带式车辆悬挂系统为研究对象,对车体的垂直振幅、俯仰角以及车体的垂直振动加速度响应特性进行了分析。该控制方法以磁流变阻尼器为作动器,采用预瞄技术,以模糊控制为前馈控制,以PID控制为反馈控制,在MATLAB/Simulink中建立控制系统模型,对复杂随机路面输出进行数值仿真,仿真结果表明该复合控制方法具有实时性好、鲁棒性好、控制精度高等优点。与被动悬架相比,采用该智能复合控制方法的半主动悬架系统,其车身垂直振幅、俯仰角以及车体垂直振动加速度均得到了很好的控制,其中,垂直振幅均方根值减小了37.2%,俯仰角均方根值减小了45.2%,垂直振动加速度均方根值减小了38.6%。  相似文献   

13.
汽车主动悬架与转向系统的模糊参数自调整集成控制   总被引:1,自引:0,他引:1  
建立了汽车主动悬架与转向控制系统半车集成模型。应用模糊逻辑控制理论,提出一种带参数的自调整模糊方法,设计了汽车主动悬架与转向系统模糊参数自调整集成控制器,该控制系统当偏差变小或变大时,调整因子总能确保系统稳定,适合工程应用。通过对汽车主动悬架与转向控制系统试验仿真表明,实行模糊参数自调整集成控制后,汽车的整车平顺性、操纵稳定性和安全性等综合性能指标明显优于汽车主动悬架与转向系统LQG集成控制。  相似文献   

14.
基于整车转向模型的汽车主动悬架控制研究   总被引:3,自引:0,他引:3  
针对汽车主动悬架系统在转向过程中的动力学行为,建立了整车转向模型。从提高汽车转向时的乘坐舒适性和操纵稳定性出发,从时域和频域两方面研究了整车系统的最优控制问题。考虑转向过程中汽车的横摆、侧倾、俯仰及垂直方向的振动和悬架的动挠度,定义了范数评价指标,并根据人体对振动的敏感频率范围引入了适当的频域加权函数,设计出最优控制器。仿真结果表明,该方法能够有效抑制由转向和路面不平引起的振动,明显降低人体敏感频段的垂直和旋转方向振动的幅值,使悬架动挠度有所下降。  相似文献   

15.
建立了汽车七自由度主动悬架整车模型,结合模糊控制与PID控制技术,研究不同路面激励下主动悬架的时域响应。设计了以前、后悬位置处车身垂直振动速度为控制量,以主动控制力作为输出变量的参数自调整模糊PID控制器。以C级路面四轮时域相干白噪声随机信号为输入,应用Simulink对控制器进行了仿真模块设计,同时也针对脉冲及正弦波信号路面激励下的时域响应进行了验证。结果表明:基于不同的路面激励,该控制方式可明显减小整车车身垂直振动加速度、俯仰与侧倾角加速度等指标,优于其他控制方式,说明该方法在改善汽车行驶平顺性方面具有较好的控制效果,对于深入研究悬架性能优化具有重要参考价值。  相似文献   

16.
为了提高电磁式悬架主动控制的性能,简化作动器结构以及控制系统,设计一套以单相两极的动圈式音圈直线电机作为作动器的主动悬架控制系统。设计了外环模糊PID,内环电流滞环的双闭环控制器。搭建了作动器驱动电路,验证音圈电机的电流跟踪控制,证明音圈电机作为作动器是简单有效的。通过分析汽车悬架模型和音圈电机模型,在MATLAB/Simulink仿真环境中按照实际参数搭建控制系统进行仿真验证,结果表明,该系统动态响应快,控制精度高,降低车身振动加速度约27%,该控制策略可以有效减振。  相似文献   

17.
针对车辆半主动悬架系统,提出了一种基于变论域模糊PID控制方法,目标是提高车辆在随机路面激励作用下的平顺性。通过将变论域方法与模糊PID控制器相结合来解决模糊PID存在的因模糊规则制定盲目性而产生的在线调节时间过长等问题。由仿真和实验研究对比可知,变论域模糊PID控制下的半主动悬架系统中的车身垂直振动速度和加速度比常规PID控制下的车身垂直振动速度和加速度分别减小了46.56%和29.21%,相比被动悬架系统的车身垂直振动速度和加速度分别减小了58.05%和49.74%。使用该车辆半主动悬架模糊控制方法可提高车辆的平顺性。  相似文献   

18.
为优化悬架减振性能和馈能性能,提出了一种馈能磁流变减振器结构,并设计了相应的半主动悬架模糊滑模控制策略。建立了磁流变减振器力学模型和馈能模型,以及相应的二自由度半主动悬架系统数学模型。针对半主动悬架系统的不确定性,基于混合天地棚阻尼控制系统,设计了滑模变结构控制器。使用饱和函数缓解系统抖振,并运用模糊控制优化滑模控制器。用谐波叠加法生成路面激励输入,分别对被动悬架、基于混合天地棚阻尼控制的半主动悬架以及基于模糊滑模控制的半主动悬架进行对比仿真。结果表明:基于模糊滑模控制的半主动悬架减振性能更好,能耗更小,且有良好的馈能性能,验证了馈能磁流变减振器结构的可行性和模糊滑模控制策略的有效性。  相似文献   

19.
基于ADAMS和MATLAB的汽车悬架系统仿真分析   总被引:3,自引:0,他引:3  
文中对汽车半主动悬架系统的仿真分析采用了ADAMS和MATLAB联合仿真方法.在ADAMS中建立了1/4汽车悬架的动力学模型,然后用MATLAB软件建立汽车半主动悬架的阻尼控制模型,通过改变阻尼系数减小汽车的垂直振动.在MATLAB/SIMULINK中建立采用模糊逻辑控制的控制系统模型,分析汽车车身垂直方向的加速度,来达到汽车行驶的平顺性.ADAMS和MATLAB联合仿真方法为汽车动力学仿真提供了一种新途径.  相似文献   

20.
运用模糊控制方法设计了基于车体加速度和车体加速度变化率的模糊控制器,利用磁流变阻尼器模型将车体产生的电流转换为阻尼力。运用MATLAB/Fuzzy Toolbox+UM软件建立了磁流变阻尼半主动悬架仿真系统,通过数值仿真分析比较了列车在相同输入条件下基于磁流变阻尼器模糊控制与被动悬挂控制的时间响应特性。仿真结果表明:采用基于磁流变阻尼器的模糊控制方法,阻尼器实际阻尼力能有效跟踪控制系统的期望阻尼力,从而提高动车的平稳性、安全性。相对于被动悬挂,基于磁流变阻尼器的模糊控制系统能够有效减小车体振动,脱轨系数平均改善率为32.04%,轮重减载率平均改善率为46.45%;车体中部的横向振动加速度最大值改善率最高;横向Sperling指数在车体前端改善率较高,为11.05%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号