首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Summary The miscibility of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) with poly(styrene-co-acrylic acid) (SAA) or poly(styrene-co-methacrylic acid) (SMA) containing respectively up to 22 mol % of acrylic or methacrylic acid was studied by Differential Scanning Calorimetry and viscosimetry. All PPO/SAA or PPO/SMA blends containing 60% or less by weight of PPO were miscible and showed only one glass transition temperature (Tg). Above 60% of PPO, two Tg's were however observed for the blends in which the acid content in the SAA or SMA reaches 20% or 12% by mole respectively; the higher Tg is slightly lower than the one of pure PPO, while the lower one corresponds to a miscible blend of lower content of PPO.A DSC study showed that depending on the blend ratio, two or three glass transition temperatures were observed when a copolymer of ethyl methacrylate containing 8 mol % of 4-vinylpyridine (EM4VP-8) was added to miscible PPO/SMA-12 blends. The PPO dissolution in the SMA-12 copolymer was affected by the specific interactions that occurred between this latter copolymer and the EM4VP-8.  相似文献   

2.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by solution casting. The crystallization behavior and hydrophilicity of ternary blends were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), wide angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and contact angle test. According to morphological analysis, the surface was full of typical spherulitic structure of PVDF and the average diameter was in the order of 3 μm. The samples presented predominantly β phase of PVDF by solution casting. It indicated that the size of surface spherulites and crystalline phase had little change with the PMMA or PVP addition. Moreover, FTIR demonstrated special interactions among the ternary polymers, which led to the shift of the carbonyl stretching absorption band of PVP. On the other hand, the melting, crystallization temperature, and crystallinity of the blends had a little change compared with the neat PVDF in the first heating process. Except for the content of PVP containing 30 wt %, the crystallinity of PVDF decreased remarkably from 64% to 33% and the value of t1/2 was not obtained. Besides, the hydrophilicity of PVDF was remarkably improved by blending with PMMA/PVP, especially when the content of PVP reached 30 wt %, the water contact angle displayed the lowest value which decreased from 98.8° to 51.0°. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Summary Blends containing poly(N-vinyl-2-pyrrolidone) (PVP) and poly(hydroxyethyl methacrylate) (PHEMA) with (styrene-co-dimethyl itaconate) (Sty-co-DMI) and (styrene-co-diethylitaconate) (Sty-co-DEI) copolymers of three different compositions were studied. One Tg value over the whole range of compositions is observed for the majority of the blends, what is indicative of compatibility. The Gordon-Taylor kGT and the Couchman kC parameters were determined for all the blends in order to compare the strength of the interactions. The effect of the side chain structure of the copolymer on the miscibility of these blends is analyzed.  相似文献   

4.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
The phase separation behavior of initially compatible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) with poly(o-fluorostyrene-co-p-chlorostyrene) [poly(oFS-co-pCIS)] and with poly(o-fluorostyrene-co-o-chlorostyrene) [poly(oFS-co-oCIS)] was studied by DSC. It was found that copolymers of poly(oFS-co-pCIS) containing between 15 and 62 mol % pCIS have shown no phase separation after annealing at temperatures up to 320°C. It was also observed that blends containing this copolymer with 74 mol % pCIS show phase separation at 250°C, which depended on blend composition. Additionally, all PPO/poly(oFS-co-oCIS) blends exhibit phase separation after annealing to a temperature of 230°C. Thermal degradation of the polymer blends was not observed at the temperatures studied.  相似文献   

6.
In this study, hydrogels were prepared from blends of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP). The miscibility of the polymers was confirmed with differential scanning calorimetry with the appearance of a single glass‐transition temperature. Additionally, a negative Flory–Huggins interaction parameter further verified the interaction between PVA and PVP. We evaluated the stability of the hydrogels by swelling the gels in phosphate‐buffered saline solutions at pH 7.4. With attenuated total reflectance‐Fourier transform infrared spectroscopy, it was determined that, during swelling, PVP dissolved out of the gel over time and the equilibrium gel content of PVP was nearly identical in all of the samples investigated. After the dissolution of PVP, the equilibrium water content of the gels ranged from 64 to 76 wt %. Additionally, rubber elasticity studies were performed to elucidate information about the physically crosslinked network structure. As determined from rubber elasticity experiments, the mesh size of the physically crosslinked hydrogels ranged from 90 to 230 Å. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Vibration welding is used to assess the weldability of poly(butylene terephthalate) (PBT) and a polycarbonate/poly(butylene terephthalate) blend (PC/PBT) to each other and to other resins and blends: PBT to PC/PBT, PBT to modified poly(phenylene oxide) (M-PPO), PBT to polyetherimide (PEI) and PEI to a 65 wt% mineral-filled polyester blend (65-PF-PEB), PBT to a poly(phenylene oxide)/polyamide blend (PPO/PA), PC/PBT to M-PPO, and PC/PBT to PPO/PA. Based on the tensile strength of the weaker of the two materials in each pair, the following relative weld strengths have been demonstrated: PBT to PC/PBT,98%; PBT to PEI, 95%; 65-PF-PEB to PEI, 92%; and PC/PBT to M-PPO, 73%. PBT neither welds to M-PPO nor to PPO/PA, and PC/PBT does not weld to PPO/PA.  相似文献   

8.
Blends between poly(acrylic acid) and two different poly(oxyethylenes), (1) polyethylene glycol (PEG-1000) and (2) poly(oxyethylene) (20) sorbitan monooleate (Tween-80), were studied by differential scanning calorimetry. The glass transition temperatures, Tg, of the various compositions of these blends were found to follow Fox's equation. At room temperature, blends containing no more than 60% PEG-1000 were amorphous and exhibited only a single glass transition. For these blends with PEG-1000, the glass transition temperatures for the annealed samples were higher than for the quenched samples due to the formation of a PEG crystalline phase. It was also found that addition of an amorphous polymer such as poly(acrylic acid) significantly reduced the degree of crystallinity of a semicrystalline polymer such as poly(oxyethylene). The Tween-80 systems did not show phase separation at room temperature. The compatibility between this poly(acrylic acid) and this poly(oxyethylene) was attributed to hydrogen bonding and to the lower crystalline lattice energy of this poly(oxyethylene) through its effect on its ideal solution solubility. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
This paper reports on the interpolymer complex formation and polymer blends between poly(monoethyl itaconate) (PMEI) and poly(N-vinyl-2-pyrrolidone) (PVP). The formation of the interpolymer complex was found to depend upon the solvent medium. Stoichiometry of the complexes prepared from methanol solutions, as calculated from elemental analysis, is close to 1 : 1. Specific interactions of PMEI/PVP complexes and blends of these polymers have been characterized by FTIR. Strong hydrogen bonding for complexes and blends has been found. A calorimetric study of the complexes and blends has been performed over a wide temperature range.  相似文献   

10.
Miscibility studies of amorphous poly(amide)/poly(vinyl pyrrolidone) (PA/PVP) blends containing a crystalline phytochemical called “mangiferin” have been carried out using differential scanning calorimetry, Fourier transformed infrared spectroscopy and polarized optical microscopy. The binary blends of PA/PVP prepared from dimethylsulfoxide solutions were found to be completely miscible showing a systematic movement of a single glass transition temperature over the entire composition range. The FTIR study indicated the occurrence of cross-hydrogen bonding interactions between PA and PVP, which may be responsible for complete miscibility of the PA/PVP pair. Moreover, cross-hydrogen bonding promotes miscibility in binary blends of PA/mangiferin and PVP/mangiferin. However, the addition of mangiferin to PA/PVP blends has resulted in liquid-liquid phase separation between PA/mangiferin and PVP/mangiferin phases due to the preferential affinity of mangiferin to PVP than to PA. With increasing mangiferin concentration, liquid-liquid phase segregations occur between PA + mangiferin and PVP + mangiferin phases in addition to the solid-liquid phase transition of mangiferin crystals. Lastly, a ternary morphology phase diagram of the PA/PVP/mangiferin blends was established, which exhibited various coexistence regions such as isotropic, liquid + liquid, liquid + crystal, liquid + liquid + crystal, and solid crystal regions.  相似文献   

11.
Blends of poly(ethylene ortho-phthalate) (PEOP), and poly(vinyl acetate) (PVAc), appear to be compatible at all compositions, from visual examination at room temperature and differential scanning calorimetry tests. Both low- (PEOP-1) and high-molecular weight (PEOP-2) alloys with PVAc show a single composition-dependent glass transition temperature (Tg). Some blends show Tg values that are below the Tg for either of the pure polymers. Couchman's equation, with a slight modification, can be used to model Tg behavior. All PEOP-2 blends with PVAc, phase separate at high temperatures, whereas PEOP-1–PVAc blends remain miscible under the same conditions. The composition dependence of the blends refractive index shows a deviation from simple additivity rules, and a similar trend is observed in density measurements. When comparing Flory's characteristic parameters for the polymers, compatibility is predicted for PVAc–PEOP blends. In contrast, blends of PEOP and poly(methyl methacrylate) (PMMA), which has a similar chemical structure to that of PVAc are predicted to be incompatible, in agreement with experimental evidence. It is suggested that compatibility is produced because of possible specific interactions between the aromatic group of PEOP and the ester carbonyl on PVAc, which is not sterically hindered as is the corresponding moiety on PMMA.  相似文献   

12.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMA) (designated iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(vinyl pyrrolidone) (PVP) primarily in chloroform to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PVP. The aPMMA/PVP and sPMMA/PVP blends were found to be miscible because all the prepared films showed composition-dependent glass-transition temperatures (Tg). The glass-transition temperatures of the aPMMA/PVP blends are equal to or lower than weight average and can be qualitatively described by the Gordon–Taylor equation. The glass-transition temperatures of the other miscible blends (i.e., sPMMA/PVP blends) are mostly higher than weight average and can be approximately fitted by the simplified Kwei equation. The iPMMA/PVP blends were found to be immiscible or partially miscible based on the observation of two glass-transition temperatures. The immiscibility is probably attributable to a stronger interaction among isotactic MMA segments because its ordination and molecular packing contribute to form a rigid domain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3190–3197, 2001  相似文献   

13.
Poly(acrylic acid) (PAA) and poly(vinyl pyrrolidone) (PVP) were chosen to prepare polymer complex and blends. The complex was prepared from ethanol solution and the blends were prepared from 1-methyl-2-pyrrolidone solution. DSC results show that the Tgs of the PAA/PVP blends lie between those of the two constituent polymers, whereas Tg of the PAA/PVP complex is higher than both blends and the two constituent polymers. TGA results show that degradation temperature, Td, of PAA increases upon adding PVP in the blend, but thermal stability of the complex is higher than that of the blends as reflected by the higher Td. Both FTIR and high-resolution solid state NMR show strong hydrogen bonding between PAA and PVP by showing significant chemical shift. The T(H) measurement shows that the homogeneity scale for the blend is at ∼20 Å and that for the complex is ∼15 Å.  相似文献   

14.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
In this study, biodegradable blends of poly(ε‐caprolactone) (PCL) and poly(N‐vinylpyrrolidone) (PVP) were prepared by a new strategy in the following steps: (1) free radical polymerization of N‐vinyl‐2‐pyrrolidone (NVP) in ε‐caprolactone (CL); (2) ring‐opening polymerization of ε‐caprolactone in the presence of PVP to obtain the target blends. The structure of the blends was confirmed by FTIR and 1H NMR, and the molecular weight of PCL and PVP were determined by GPC. SEM study revealed that this polymerization method could decrease the disperse phase size and improve the interphase when compared with solution‐blending method. The phase inversion occurred when PVP content was 15–20 wt %. Subsequently, the PCL sphere dispersed in PVP matrix and its size decreased with the increase of PVP content. The contact angle results showed that PVP has a profound effect on hydrophilic properties of PCL/PVP blends. PCL/PVP blends are believed to be promising for drug delivery, cell therapy, and other biomedical applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The rheological properties of adhesive miscible blends of high‐molecular‐weight poly(N‐vinyl pyrrolidone) (PVP) with short‐chain poly(ethylene glycol) (PEG) under oscillatory and steady‐state shear flow have been examined with dynamic mechanical and squeezing‐flow analysis. The latter allows the rheological characterization of adhesive blends under conditions modeling adhesive‐bond formation as a fixed compressive force is applied to an adhesive film. The most adhesive PVP blend with 36 wt % PEG has been established to flow like a viscoplastic (yield stress) liquid with a power‐law index of about 0.12. The study of the apparent yield stress as a function of the PVP–PEG composition, content of sorbed water, molecular weight of PVP, and temperature shows that the occurrence of a yield stress in the blends results most likely from a noncovalent crosslinking of PVP macromolecules through short PEG chains by means of hydrogen bonding of both terminal OH groups of PEG to the complementary functional groups in PVP monomer units. A molecular mechanism of PVP–PEG interaction was established earlier by direct and independent methods. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 522–537, 2006  相似文献   

17.
Studies have been done on strain-induced microstructure development in syndiotactic polystyrene (s-PS) and its blends with poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) in 70/30 and 50/50 compositions of stretched annealed samples. Wide-angle X-ray showed that crystal orientation is less in annealed blend samples compared to annealed pure s-PS for a higher draw ratio. It increases with annealing, and relaxation occurs after a certain annealing temperature at above 180° for both s-PS and s-PS/PPO 70/30 blends. No crystal orientation was observed in the blend of s-PS/PPO 50/50 stretched samples. Small angle X-ray scattering (SAXS) shows the inclusion of amorphous PPO chains in between s-PS crystals lamella. Fourier transform infrared (FTIR) spectroscopy shows that the s-PS molecular chain packing band at 905 cm?1 is enhanced due to annealing in oriented samples and saturates to around 0.63. The crystal chain relaxation is lower than amorphous chains of s-PS. The molecular chains of amorphous PPO are less oriented into the blend matrix, whereas its relaxation is enhanced during heat treatment and reaches an optimum value after full relaxation. The different behaviors of orientation and relaxation of s-PS and PPO chains into the blend matrix produce superstructures.  相似文献   

18.
The objective of these investigations was to increase the use temperature of novel star‐block polymers consisting of a crosslinked polydivinylbenzene (PDVB) core from which radiate multiple poly(isobutylene‐b‐polystyrene) (PIB‐b‐PSt) arms, abbreviated by PDVB(PIB‐b‐PSt)n. We achieved this objective by blending star‐blocks with poly(phenylene oxide) (PPO) that is miscible with PSt. Thus, various PPO/PDVB(PIB‐b‐PSt)n blends were prepared, and their thermal, mechanical, and processing properties were investigated. The hard‐phase glass‐transition temperature of the blends could be controlled by the amount (wt %) of PPO. The blends displayed superior retention of tensile strengths at high temperatures as compared to star blocks. The melt viscosities of blends with low weight percentages of PPO were lower than those of star blocks. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2866–2872, 2002  相似文献   

19.
The melting and crystallization behavior and phase morphology of poly(3-hydroxybutyrate) (PHB) and poly(DL-lactide)-co-poly(ethylene glycol) (PELA) blends were studied by DSC, SEM, and polarizing optical microscopy. The melting temperatures of PHB in the blends showed a slight shift, and the melting enthalpy of the blends decreased linearly with the increase of PELA content. The glass transition temperatures of PHB/PELA (60/40), (40/60), and (20/80) blends were found at about 30°C, close to that of the pure PELA component, during DSC heating runs for the original samples and samples after cooling from the melt at a rate of 20°C/min. After a DSC cooling run at a rate of 100°C/min, the blends showed glass transitions in the range of 10–30°C. Uniform distribution of two phases in the blends was observed by SEM. The crystallization of PHB in the blends from both the melt and the glassy state was affected by the PELA component. When crystallized from the melt during the DSC nonisothermal crystallization run at a rate of 20°C/min, the temperatures of crystallization decreased with the increase of PELA content. Compared with pure PHB, the cold crystallization peaks of PHB in the blends shifted to higher temperatures. Well-defined spherulites of PHB were found in both pure PHB and the blends with PHB content of 80 or 60%. The growth of spherulites of PHB in the blends was affected significantly by 60% PELA content. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1849–1856, 1997  相似文献   

20.
In this study, miscibility and tack of blends of poly (vinylpyrrolidone) (PVP)/acrylic pressure-sensitive adhesive (PSA) were evaluated. For this purpose, appropriate amounts of PVP (2–30% w/w) were added to an acrylic PSA to obtain visually homogeneous solution. The resulting solution was evenly applied on a polyethylene terephthalate (PET) film with final specific thicknesses of 10, 40, and 70 μm by using a film applicator and miscibility as well as tack values were evaluated. With the addition of 2% (w/w) PVP the tack value decreased and increased in 5% (w/w) PVP and then continuously decreased up to 30%(w/w). It was found that the tack value was related to miscibility as well as to viscosity and the free functional group such as hydroxyl group of the blend. By the morphological analysis performed through scanning electron microscopy (SEM) and also by the study of thermal analysis using the differential scanning calorimetry (DSC) behavior of blends, it was found that the two distinct phases constituted after adding 5% (w/w) of PVP. This resulted in the acrylic PSA forming the continuous phase, and by increasing the concentration of PVP a dispersed phase was developed. The dispersed phase has a higher viscosity than the continuous phase and therefore cannot wet the adherent and hence result in lowering the tack values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号