首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以蕨麻为原材料,采用纤维素酶解法提取蕨麻中的可溶性膳食纤维。通过单因素试验考察了料液比、纤维素酶用量、酶解溶液p H、酶解温度、酶解时间5个因素对蕨麻可溶性膳食纤维提取率的影响。在此基础上,用正交试验设计对蕨麻可溶性膳食纤维酶解法的提取工艺进行了优化。提取蕨麻中可溶性膳食纤维最优的工艺流程为料液比1︰20 (g/mL)、纤维素酶用量350 U/g、酶解温度45℃、酶解溶液pH 4.5、酶解时间1 h。在工艺流程下,蕨麻可溶性膳食纤维的提取率为6.53%。  相似文献   

2.
以小麦麸皮膳食纤维为原料,采用纤维素酶解法对小麦麸皮膳食纤维进行改性,制备可溶性麸皮膳食纤维。通过正交试验优化工艺条件,确定了纤维素酶解的最佳工艺条件:料液比1∶10、酶用量20 U/g、酶解p H 4.8、酶解温度60℃、酶解2 h,可溶性膳食纤维得率为12.67%。  相似文献   

3.
王凌翌 《中国油脂》2021,46(6):114-118
豆渣是大豆加工的主要副产物之一,含有丰富的蛋白质和膳食纤维。为促进豆渣高值化利用,采用联合酶法从豆渣中提取蛋白肽和可溶性膳食纤维(SDF)。首先用碱性蛋白酶酶解豆渣蛋白,以蛋白肽得率为指标,通过单因素试验优化了提取豆渣蛋白肽的工艺条件,再将脱蛋白豆渣用纤维素酶酶解制备SDF,以SDF提取率为指标,通过单因素试验优化提取SDF的工艺条件。结果表明:碱性蛋白酶酶解提取蛋白肽最佳工艺条件为料液比1∶ 35、酶与底物比2%、酶解时间5 h、酶解温度50 ℃、pH 95,在此条件下豆渣蛋白肽得率为66.81%;纤维素酶酶解提取SDF最佳工艺条件为料液比1∶ 30、酶与底物比3%、酶解温度50 ℃、酶解时间2 h、pH 4.0,在此条件下SDF提取率为1554%。利用碱性蛋白酶和纤维素酶依次酶解后,豆渣总利用率达到了89.81%,这为豆渣综合开发利用提供了一种新途径。  相似文献   

4.
以黑灵芝为原料,采用酶法和化学法联用,从黑灵芝中提取出可溶性膳食纤维和不可溶性膳食纤维,借助响应面设计分析,考察酶解温度、酶解时间、料液比和碱提pH、碱提温度、碱提时间分别对黑灵芝可溶性膳食纤维(SDF)、不可溶性膳食纤维(IDF)得率的影响.结果表明,最佳提取工艺条件分别为:酶解温度98℃、酶解时间103min、料液比1∶32和碱提pH10、碱提温度48℃、碱提时间41min,在此条件下黑灵芝SDF得率为1.08%,IDF得率为88.68%.  相似文献   

5.
建立纤维素酶辅助苹果梨渣可溶性膳食纤维的最佳提取工艺。以苹果梨渣为原料,首先研究了料液比、酶添加量、酶解时间、酶解温度对得率的影响。在此单因素实验基础上,优化出了纤维素酶辅助提取苹果梨渣可溶性膳食纤维的最佳工艺参数:料液比1∶17(g/m L),酶添加量60U/g,酶解时间7h和酶解温度49℃,此时可溶性膳食纤维的得率为15.31%。然后对所得可溶性膳食纤维持水力、持油力和膨胀力进行研究发现:所得苹果梨渣可溶性膳食纤维持水力4.72g/g、持油力2.39g/g及膨胀力4.46m L/g。  相似文献   

6.
本文以牛蒡为原料,先用化学方法处理得到牛蒡可溶性膳食纤维(SDF)和牛蒡渣,然后再用酶法处理前一步得到的牛蒡渣,进一步提取牛蒡可溶性膳食纤维。通过单因素试验及正交试验对化学法和酶法条件进行了优化。结果表明,化学法制备可溶性膳食纤维的较佳工艺条件是:温度100℃,反应时间20 min,pH10.0,物料比1∶15,在此条件下,牛蒡提取SDF得率为11.2%。使用复合多糖酶处理前一步得到的牛蒡渣,酶法提取可溶性膳食纤维的较佳条件为:复合多糖酶的用量8%、酶解温度40℃、酶解时间1h、pH 3.9、料液比为1∶18,在此条件下,SDF得率为4.82%。  相似文献   

7.
以玫瑰花渣为原料,通过酶-化学法提取膳食纤维,并以可溶性膳食纤维(SDF)得率为评判指标,在单因素试验的基础上通过响应面试验优化提取工艺。结果表明:最佳工艺参数为料液比1∶35(g/mL)、纤维素酶添加量4%(以玫瑰花渣质量为基准)、碱液质量浓度0.045 g/mL、碱解时间60 min,在此条件下玫瑰花渣SDF得率为43.59%。  相似文献   

8.
以秋葵为原料,采用单因素和正交试验方法研究了提取温度、提取时间、料液比和提取液的pH对酸水解提取秋葵中可溶性膳食纤维的影响,并优化了酸水解法提取秋葵中可溶性膳食纤维的工艺。结果表明:酸水解法提取秋葵中可溶性膳食纤维的优化工艺条件为料液比1∶15(g∶mL)、pH 7.0、提取温度80 ℃、提取时间110 min,在此条件下的水溶性膳食纤维的得率为12.65%。  相似文献   

9.
试验以生产苦荞麦心粉的副产物苦荞麦皮为原料,经润水和膨化,以经纤维素酶改性后的苦荞麦可溶性膳食纤维(SDF)得率为指标,通过单因素实验,采用响应面法分析了反应过程中温度、时间、加酶量和料液比对于SDF得率的影响,分析结果表明料液比、温度和时间对最终SDF得率有显著的影响,优化得到酶法苦荞麦麸皮纤维改性的最佳工艺条件参数为料液比1:22,酶解温度40℃、加酶量4%、酶解时间5 h、可溶性膳食纤维的提取率为62.85%,比改性前膳食纤维的持水力和溶胀性分别提高了80.3%和109.1%,  相似文献   

10.
以大豆皮为原料,采用纤维素酶联合半纤维素酶制备大豆皮可溶性膳食纤维(soluble dietary fiber,SDF),通过单因素及响应面试验设计,以大豆皮SDF得率为考察指标,优化其酶解工艺,并测定其持水力、膨胀力及持油力。结果表明,大豆皮SDF最优酶解工艺为料液比1∶20(g/mL)、酶添加量0.85%、酶解时间5 h、酶解温度45℃、酶解pH4.6,该条件下大豆皮SDF得率为12.17%,制备的大豆皮SDF具有良好的持水力、膨胀力及持油力。  相似文献   

11.
刘湾  马海乐  黄六容 《食品工业科技》2014,(12):172-175,179
目的:提高蒜皮膳食纤维的可溶性、评价其抗氧化活性。方法:以蒜皮为原料,采用酶-重量法进行蒜皮膳食纤维(TDF)提取,以及不溶性膳食纤维(IDF)和可溶性膳食纤维(SDF)的分离,对于分离得到的IDF,通过单因素和正交实验,探索纤维素酶酶法改性的最佳工艺条件;对于蒜皮不溶性膳食纤维,通过纤维素酶法改性提高其可溶性。结果:蒜皮中TDF含量为69.18%,其中SDF含量为7.28%、IDF为61.9%;酶法改性的最优条件为:料液比1∶15g/mL、纤维素酶加酶量5%、酶解温度45℃、酶解时间4h、酶解pH6.5,此条件下蒜皮IDF的33.20%转化成为SDF;酶解后溶出的SDF溶液对羟自由基和DPPH自由基清除效果较好。结论:纤维素酶酶解可以显著改善蒜皮膳食纤维的溶解特性,改性后的蒜皮SDF具有较好抗氧化活性。  相似文献   

12.
以茶树菇膳食纤维(DF)为原料,比较改性前后可溶性膳食纤维(SDF)得率以及理化性质,采用纤维素酶和高温高压对膳食纤维改性。在单因素基础上进行正交试验优化,得到两种最佳改性工艺条件。结果表明,纤维素酶改性茶树菇DF的最佳工艺条件为:料液比1:30,纤维素酶用量1.5%,酶解时间2.0 h。在最佳改性条件下,茶树菇SDF得率为4.9%。高温高压改性茶树菇DF的最佳工艺条件:料液比1:30,改性温度125℃,改性时间50 min。在最佳改性条件下,茶树菇SDF得率为6.8%。纤维素酶改性和高温高压改性均能改善膳食纤维的理化性质;高温高压法处理的膳食纤维在持水力、膨胀力、阳离子交换力、葡萄糖吸收力上要优于纤维素酶法。扫描电镜分析表明,两种改性方法使膳食纤维结构表面积明显增大且表面疏松多孔,与理化分析的结果一致。  相似文献   

13.
本文对豆渣膳食纤维的制备工艺进行了研究。利用生物酶法改性提高豆渣中可溶性膳食纤维(SDF)含量,通过单因素实验和正交实验确定了纤维素酶酶解的最佳工艺。最佳工艺条件为:纤维素酶添加量0.5%,料液比1∶12,温度45℃,pH值4.5,酶解时间1.5h,乙醇沉淀时间1h,在此条件下,豆渣SDF得率可达到8.53%。在此基础上,制得了豆渣膳食纤维粉,其持水力和膨胀性分别为5.0783g/g和8.4675mL/g,色泽呈乳白色,具有豆渣膳食纤维固有的气味和滋味,质量指标达到国家二级标准。  相似文献   

14.
项凤影  张莹  路祺  高悦  孙继旭  张军 《食品工业科技》2014,(10):150-154,158
以菠萝渣为原料,探讨了水浴法和超声法各因素对菠萝渣可溶性膳食纤维得率的影响,并在单因素实验的基础上,进行超声法提取菠萝渣可溶性膳食纤维(SDF)的正交实验,并对超声法提取的菠萝渣SDF进行红外、扫描电镜和XRD结构表征及抗氧化检测。结果表明:其优化工艺条件为超声pH5,超声温度60℃,超声料液比1∶20g·mL-1,超声时间45min,在此条件下菠萝渣SDF得率为15.91%。菠萝渣SDF的红外光谱图在3404cm-1附近出现强圆底吸收峰,表明菠萝渣SDF具有高纯度和高结晶度。此外,扫描电镜分析表明菠萝渣SDF呈现较为规整的块状结构。在相同浓度下,菠萝渣SDF抗氧化活性比菠萝渣抗氧化活性略有提高,但都远低于商业合成抗氧化剂BHA。  相似文献   

15.
超声波协同酶法制备杏仁皮中水溶性膳食纤维及理化研究   总被引:1,自引:0,他引:1  
以辽西地区扁杏仁皮为原料,超声波协同酶法制备水溶性膳食纤维(SDF).对超声波提取参数进行优化,然后选取液料比、复合纤维素酶添加量及酶解时间进行单因素实验.采用液料比、酶添加量和酶解时间为变量,以SDF提取率为响应值,进行响应面实验设计,优化SDF制备工艺.结果表明,超声波辅助提取参数为:功率500W,处理时间15min.最佳工艺参数为:液料比17:1,酶添加量1.8%,酶解时间3.5h,酶解温度55℃;此工艺条件下,杏仁皮SDF提取率可达13.27%.SDF的持水性达到8.31g/g,溶胀性为6.48mL/g.杏仁皮水溶性膳食纤维具有良好的理化性能.  相似文献   

16.
花椒籽可溶性膳食纤维的提取工艺研究   总被引:1,自引:0,他引:1  
以脱脂花椒籽为原料,采用单因素实验和响应面法优化酶法提取花椒籽可溶性膳食纤维的工艺研究,并对制得的可溶性膳食纤维的理化性质进行了测定。结果表明,酶法提取花椒籽可溶性膳食纤维的最佳工艺条件为:纤维素酶添加量2.0%,料液比1∶23,酶解温度42℃,酶解时间13 h,酶解pH 4.33,胰蛋白酶添加量0.4%。在最佳工艺条件下,花椒籽可溶性膳食纤维的平均得率为9.19%,持水力为2.33 g/g,膨胀率为2.05 mL/g。  相似文献   

17.
以马铃薯渣为原料制备膳食纤维,用纤维素酶和木聚糖酶对其进行改性处理,以提高可溶性膳食纤维得率。在单因素实验的基础上选取合适的因素及水平,通过响应面法优化2种酶复合使用的工艺条件,得到的最佳条件为:料液比1:15(g/mL)、纤维素酶添加量0.41%、木聚糖酶添加量0.40%、pH5、酶解温度50℃、酶解时间1.55 h。在此条件下,可溶性膳食纤维得率为23.15%,比原马铃薯渣提高10.7%。  相似文献   

18.
王顺民  郑锐 《食品科学》2013,34(8):100-103
目的:以菜籽皮为原料,研究不溶性膳食纤维的酶法提取工艺条件。方法:采用淀粉酶和蛋白酶酶解菜籽皮,以不溶性膳食纤维得率为指标,通过正交试验优化最佳工艺条件。结果:淀粉酶加酶量0.7%,料液比1:20、pH5.5、温度40℃、酶解时间60min,在此条件下菜籽不溶性膳食纤维得率为81.24%;蛋白酶的添加量0.7%、料液比1:20、pH7.5、酶解温度40℃、酶解时间60min,在此条件下菜籽不溶性膳食纤维得率为77.13%。结论:确定了影响膳食纤维提取的主要影响因素,得到了菜籽皮不溶性膳食纤维酶解法提取的最佳条件。  相似文献   

19.
目的 以番茄不溶性膳食纤维为原料,用酶解法提取可溶性膳食纤维(SDF).方法 经正交试验优化提取工艺,并在优化条件下循环提取.结果 制备SDF的最佳工艺条件为:酶用量10%,酶解时间6 h,酶解温度60℃,pH 4.0,以最佳条件连续反应,产率可达31.1%.结论 确定了酶提取SDF的最佳工艺;证实循环工艺可以提高提取效率.  相似文献   

20.
纤维素酶提取水溶性膳食纤维工艺的研究   总被引:1,自引:0,他引:1  
目的 以番茄不溶性膳食纤维为原料,用酶解法提取可溶性膳食纤维(SDF).方法 经正交试验优化提取工艺,并在优化条件下循环提取.结果 制备SDF的最佳工艺条件为:酶用量10%,酶解时间6 h,酶解温度60℃,pH 4.0,以最佳条件连续反应,产率可达31.1%.结论 确定了酶提取SDF的最佳工艺;证实循环工艺可以提高提取效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号