首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有检测方法对算法生成的恶意域名检测效率不高,尤其对几种难检测的恶意域名类型检测率低的问题,提出了一种改进的基于卷积神经网络的恶意域名检测算法.该算法在现有的卷积神经网络模型的基础上,增加了提取更深层字符级特征的卷积分支,从而同时提取恶意域名的浅层和深层字符级特征并融合;引入一种聚焦损失函数以解决样本难易程度和数量...  相似文献   

2.
针对网络恶意登录异常检测过程中对用户操作日志的特征提取准确率低、泛化性差所导致的网络攻击识别率低、网络管理员反馈不及时等问题,结合注意力机制以及循环神经网络,提出一种基于深度学习的网络恶意登录异常检测方法.该方法针对不同类型的用户操作日志,使用了word-level和char-level两种编码方式;使用LSTM模型提取用户操作日志中所蕴含的特征信息,以识别用户操作日志中的正常行为;通过注意力机制使模型更加关注操作正常的特征信息,同时过滤冗余操作,得到用户操作评分;设定阈值判断该日志流是否为恶意登陆,并同时反馈给网络管理员.实验结果表明,本文所提方法可针对不同用户日志进行编码,特征提取准确率高,网络恶意登陆异常检测的F1-Score达到了0.976.  相似文献   

3.
非侵入式用电设备检测能够以低成本的方式获取详细的用户用电数据,有助于提高居民用户用电意识,减少居民用电浪费现象,以达到节能减排的目的。针对现有的基于低频数据的单任务非侵入式用电设备检测方法存在的精度低和特征淹没等问题,提出了一种基于多门控混合专家网络(multi-gate mixture-of-experts network,MMoE)和双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)相结合的多任务非侵入式用电设备检测模型。首先,利用MMoE实现底层参数的软共享,学习不同电器之间的耦合特征,充分挖掘用电设备负荷特征;然后,利用BiLSTM网络作为子任务层,在一个模型中同时输出各电器的功率序列。在UK-DALE(UK recording domestic appliance-level electricity)公开数据集上的实验结果表明,该方法在各电器的检测指标上均优于现有的几种单任务方法,验证了该方法具有良好的用电设备检测性能。  相似文献   

4.
5.
针对难以获取足量样本数据的齿轮故障诊断率低的问题,提出一种基于最小二乘生成对抗网络(LSGAN)结合长短期记忆网络(LSTM)的方法.将齿轮的原始样本输入LSGAN模型中,通过对生成网络和判别网络的交替训练,学习出不同状态的样本数据,从而实现数据增强,通过生成样本结合原始样本训练LSTM诊断模型,完成小样本下的故障诊断.以康狄涅格大学的齿轮实验数据为例对所提方法进行验证,结果表明,与传统方法相比,诊断准确率提高至98.3%.通过可视化方法显示出诊断方法的优越性,为小样本条件下的故障诊断提供参考.  相似文献   

6.
针对在特殊领域中小样本数据难以通过训练被分类管理的问题,提出一种基于循环编码生成对抗网络的小样本辨识方法.首先,对小样本进行混叠循环编码,建构包含小样本深层信息的隐向量;然后,搭建一种循环生成对抗网络模型,对小样本生成扩充并通过极限学习机网络进行训练辨识;最后,结合算例,与传统生成对抗网络、深度信念网络及合成少数类过采...  相似文献   

7.

为实现环境类虚假投诉举报检测, 提出一种基于对抗迁移学习方法的虚假投诉举报检测模型。首先, 以长短期记忆(long-short term memory, LSTM)网络为特征抽取器抽取微博谣言(源域)和投诉举报文本(目标域)的共享特征; 然后, 使用对抗学习方法进行领域适配, 将源域特征和目标域特征进行特征对齐; 最后, 由分类器输出分类结果, 并由分类损失和领域适配损失共同更新网络参数。通过模型对比实验和消融实验可知, 模型的F1达到了79.61%。结果表明, 对抗迁移学习模型具有较好的性能, 适合应用在环境类虚假投诉举报检测任务中。

  相似文献   

8.
随着互联网的发展,网上购物成为主流消费方式,随之产生了大量的商品文本数据,需要对商品进行准确而高效的分类。利用机器学习进行文本分类需要进行复杂的人工设计特征和提取特征过程。随着深度学习领域的发展,基于深度学习的文本分类技术效果显著。设计了一个基于长短期记忆网络(LSTM)的中文文本多分类器。首先对数据进行预处理,利用Tokenizer分词技术将文本处理为计算机可理解的词向量传入LSTM网络,并加入Dropout算法以防止过拟合得出最终的分类模型。将该模型与逻辑回归、多项式朴素贝叶斯、线性支持向量机、随机森林模型进行对比发现,基于LSTM的中文文本多分类方法具有较好的效果。  相似文献   

9.
为了研究DNS流量中的域名角色,为域名影响力分析提供一种域名定位和筛选的思路,设计一种基于DNS流量的多层多域名检测算法. 在检测阶段,从CERNET主干网边界采集DNS流量,提取请求和应答序列. 基于多层多域名的聚合特征及解析的并发性,检测流量中存在的主从域名集合,并引入时间滑动窗口机制进行置信度测量. 在测量阶段,对算法检测结果从多个角度进行分析,包括多层多域名集合的规模和相交情况、主从域名的标签级数、集合中从域名对应的资源类型等,并提供了2个存在多层多域名的典型网站案例. 测量结果验证了多层多域名现象的存在以及多层多域名集合的特点,表明了此多层多域名检测算法的有效性.  相似文献   

10.

网络钓鱼作为一种社会工程攻击手段,旨在通过伪装成可信任的实体,如银行、社交媒体平台或政府机构,通过虚假的电子邮件、网站或消息来欺骗受害者。研究者主要通过各种技术手段检测网络钓鱼攻击,但当前检测研究仍面临三方面问题。1)攻击者采用伪装、漏洞利用和规避技术以逃避检测。2)现有的检测方法存在可解释性差、实时性低以及概念漂移等问题。3)由于缺乏足够的可解释性,造成用户对检测结果不信任。该文从应用场景、数据集、检测方法等方面对当前检测研究进行归纳与总结,并提出当前面临的问题以及展望未来可能的研究热点。

  相似文献   

11.
针对对抗样本给基于深度学习的检测模型带来的严重识别干扰问题,提出一种基于随机多滤波特征统计生成对抗网络(SmsGAN)的对抗样本修复方案.采用随机多滤波特征统计网络(SmsNet)构建了特征统计层,实现了对抗样本的高精度检测,并将每个卷积核输出的特征图直接送到特征统计层获取全局特征.随机多滤波特征统计生成对抗网络(Sm...  相似文献   

12.
表面缺陷视觉检测是产品质检重要环节之一,而实际工业应用中,往往存在表面缺陷样本少、需要大量标注样本等问题。为此,将注意力机制引入Resnet50网络,提出一种基于正样本的产品表面缺陷视觉检测方法。首先,利用预训练网络Resnet50_CBAM学习到包含来自不同语义层和分辨率信息的嵌入向量,并利用多元高斯参数表示图片正常特征;其次,将缺陷图像输入到预训练网络Resnet50_CBAM,获得相应的嵌入向量和多元高斯参数;最后,采用马氏距离计算整张缺陷图像所有像素点的缺陷分数图,实现基于像素级的缺陷区域定位。实验数据集验证结果表明,与已有方法相比,所提方法需要的正常样本更少且检测精度更高,从而可以有效解决少样本的产品缺陷视觉检测难题。  相似文献   

13.
本文提出了维纳滤波算法和生成对抗网络相结合的语音去噪方法.首先用维纳滤波算法对带噪声语音信号进行预处理,提高语音信号的识别度,然后将预处理后的语音信号作为深度学习生成对抗网络的输入,进一步去除噪声信号.实验结果表明,本文提出的去噪方法将带噪声语音信号的分段信噪比从4. 83 db提升到了5. 09 db,去噪效果较为明显.  相似文献   

14.
P2P僵尸网络因具有较高的隐蔽性和健壮性,已经成为新型的网络攻击平台,对网络空间安全造成的威胁越来越大,但现有基于规则分析或流量分析的检测方法不能有效检测.为了解决P2P僵尸网络隐蔽性强、难以识别等问题,提出了一种基于图神经网络(graph neural network,GNN)的P2P僵尸网络检测方法.该方法不依赖流...  相似文献   

15.
为了解决全景视频目标跟踪过程中,由于光照条件变化、相似背景干扰、目标运动时产生的形变和尺度变化等因素的影响,在跟踪中会出现目标漂移、目标丢失等情况,进而导致目标跟踪算法成功率低,鲁棒性差等问题,提出一种基于长短期记忆网络和改进Real-Time MDNet网络的全景视频目标跟踪方法.算法首先采用浅层卷积神经网络提取特征,并利用自适应的RoIAlign减少特征提取过程中的像素损耗,而后运用目标特征在线更新最后一个全连接层的权重,在全连接层中实现前景背景分离并提取出目标区域,然后通过长短期记忆网络自适应地选取目标框的尺度,最终输出目标位置信息.实验结果表明:单目算法应用在全景数据集时,难以适应全景中的尺度变化和背景变化,改进算法利用3层长短期记忆网络构建的尺度预测模块,可以有效地应对全景数据存在的尺度变化和目标形变问题,在保持较好的跟踪精度的同时,可以有效地应对目标跟踪中出现的小目标、目标遮挡、多目标交叉运动的情况,获得更好的视觉效果和更高的重叠率得分.  相似文献   

16.
时间序列的异常检测是网络服务保障、数据安全检测、系统监控分析等应用中所依赖的一项关键技术。为解决在实际场景的时间序列异常检测中由于时间序列上下文的模糊性、数据分布的复杂性以及异常检测模型的不确定性所带来的异常检测结果的有效性、合理性、稳定性等不足的问题,本文提出了一种新的基于上下文生成对抗网络的时间序列异常检测方法AdcGAN。首先,通过处理历史数据,提取用于生成时序数据的条件上下文;然后,采用条件生成对抗网络的设计策略,使用条件上下文,构建上下文生成对抗网络,实现对任意时刻数据的条件分布预测,同时AdcGAN采用Dropout近似模型不确定性,使用概率分布代替点估计作为预测结果;接着,从观测的差异(用期望偏差表示)和模型的不确定性(用预测方差表示)两个方面来衡量异常;最后,提出基于数据统计信息的异常阈值自动设置方法,减少手动调节的参数量。实验结果表明,与同类基准算法进行对比,在NAB数据集中的47个真实时序数据上,本文提出的AdcGAN可以有效地检测出时序数据中的异常,在大多数评价指标上都优于其他基准方法,并且具有更好的稳定性。  相似文献   

17.
在异常检测领域中,生成对抗网络(Generative Adversarial Nets, GAN)和自编码器(Autoencoder, AE)近年来取得了较好的应用效果。然而,现有的基于GAN的异常检测模型普遍存在重构能力差的问题。针对于此,该文提出一种双判别器的GANomaly网络模型,其中,全局判别器用于提高图像的重构能力,局部判别器用于提高在空间层次的编码能力。分别在MvTec数据集和自制轮胎X光图像数据集上对文中所提方法进行验证,实验结果表明,该方法能够有效提升模型的重构能力,降低异常分数阈值,提高异常检测的准确率。  相似文献   

18.
风电功率的准确预测是减少风电并网对电网造成冲击的有效手段之一。利用深度学习算法中的长短期记忆网络(LSTM)对中期风电功率出力进行了预测,综合考虑功率数据、气象数据等多维特征,采用LSTM算法和随机森林(RF)算法搭建预测模型,预测风电场1~7日的风电功率出力。基于某风电场2014年1月到2016年12月的实际发电数据,通过实验对比BP神经网络、支持向量机(SVM)和自回归积分滑动平均模型(ARIMA)等算法可知,提出的预测方法在较为突变的天气状况下仍能保持较高的预测精度,能为风电并网和电网调度提供辅助支撑。  相似文献   

19.
利用长短期记忆(long short-term memory, LSTM)网络对水轮机机组的运行状态进行预测。对水轮机机组的流式监测数据进行标准化处理,并利用滑动窗口技术将数据转换为LSTM网络训练所需的训练数据集与测试数据集;给出LSTM预测模型结构,并通过调节网络层数、隐层神经元数目等参数对模型进行优化,建立水轮机机组的时间序列数据预测模型。经试验分析验证,与其它模型相比,基于多测点的多元长短期记忆网络预测模型具备更高的预测精度,并基于改进的雷达图分析法计算健康偏离度,成功地检测出某水电厂5号水轮机机组5月末的数据出现异常,验证了模型的有效性。  相似文献   

20.
基于LSTM网络预测的水轮机机组运行状态检测   总被引:3,自引:0,他引:3  
利用长短期记忆(long short-term memory, LSTM)网络对水轮机机组的运行状态进行预测。对水轮机机组的流式监测数据进行标准化处理,并利用滑动窗口技术将数据转换为LSTM网络训练所需的训练数据集与测试数据集;给出LSTM预测模型结构,并通过调节网络层数、隐层神经元数目等参数对模型进行优化,建立水轮机机组的时间序列数据预测模型。经试验分析验证,与其它模型相比,基于多测点的多元长短期记忆网络预测模型具备更高的预测精度,并基于改进的雷达图分析法计算健康偏离度,成功地检测出某水电厂5号水轮机机组5月末的数据出现异常,验证了模型的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号