首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
乳清中棉籽蛋白的超滤回收研究   总被引:2,自引:1,他引:2  
采用超滤技术回收蛋白质沉淀后的乳清中的棉籽蛋白,考察了操作压力、超滤时间、温度、pH、蛋白质浓度等因素对超滤膜通量的影响。结果表明,在等电点处膜通量最低,故超滤操作应在偏离蛋白质等电点的条件下进行;在实验范围内膜通量随操作压力的升高而升高,呈线性关系;随着超滤时间的延长,膜通量逐渐减小,超滤进行至20~30 min后,膜通量趋于稳定;随着温度的升高,膜通量增加。  相似文献   

2.
超滤浓缩大豆乳清蛋白   总被引:2,自引:0,他引:2  
本文对超滤技术在浓缩大豆乳清蛋白中的应用进行初步的探索,探索压力、温度、运行时间和浓缩倍率对浓缩大豆乳清蛋白的影响,结果表明截留率在92%以上。  相似文献   

3.
超滤浓缩乳清蛋白并分离乳糖的研究   总被引:1,自引:0,他引:1  
采用管式超滤装置,选用切割分子量为20000的聚丙烯腈膜,对乳清进行了超滤浓缩试验。结果表明,降低乳清pH值可提高透液通量,把乳清调整至pH7.0,再离心除去不溶性钙盐,可获得最大透液透量。中性乳清经离心沉降后,在进口压力0.24MPa,温度45℃条件下浓缩180min,平均透液通量达到29.1kg/m2·h,蛋白质含量提高到2.85%,透过液中乳糖浓度变化不大。  相似文献   

4.
微生物转谷氨酰胺酶催化乳清蛋白聚合研究   总被引:1,自引:0,他引:1  
采用SDS-PAGE分析,研究了不同条件下微生物转谷氨酰胺酶(MTGase)催化乳清蛋白(WPI)聚合。结果显示,MTGase可催化乳清蛋白的β-乳球蛋白(β-LG)和α-乳清蛋白(α-LA)聚合,形成低聚物或生物聚合物,其中β-LG更易受MTGase的催化,当TGase酶浓度一定时(0.5U/mL),TGase催化WPI聚合的最佳底物质量分数范围为2%-4%,对WPI进行加热预处理,同时添加还原剂,可明显提高MTGase对WPI的催化活性,MTGase催化WIP的最适PH值范围为6.5-7.5,当WPI经预热处理(85℃,15min),同时添加20mmol/L的DTT,TGase催化WPI聚合12h,可使质量分数为92%的β-LG和质量分数为75%的α-LA聚合。  相似文献   

5.
超滤分离大豆乳清蛋白的研究   总被引:8,自引:0,他引:8  
就超滤分离大豆乳清蛋白的意义,分离工艺、膜与组件的评价、操作参数的影响与优选、膜清洗工艺及浓缩液的应用作了全面介绍和论述,为提高原料利用率,减轻乳清废液对城市环境的污染,提供了一条切实可行的新途径。  相似文献   

6.
为改善豆腐乳清蛋白及低聚糖的回收率、提高膜通量,研究采用转谷氨酰胺酶在豆腐黄浆水自然条件下(温度50℃、pH值6.0)对乳清原液预处理,使蛋白质聚合,方便后续分离工艺选用截留分子量大的超滤膜分离大豆乳清蛋白。数据显示转谷氨酰胺酶Ⅰ可有效催化大豆乳清蛋白聚合,1%的酶添加量50℃反应30min即可催化95%以上的大豆乳清蛋白聚合,酶添加量3‰,聚合时间延长至5h。与对照组相比,乳清采用酶法预处理然后超滤分离,蛋白截留率及膜通量分别提高了2倍和1.3倍,而低聚糖的透过率没有明显影响。试验结果表明,相对于单纯的超滤工艺酶聚合预处理乳清然后超滤的分离效果是显著的。  相似文献   

7.
采用孔径为20nm的无机陶瓷膜超滤干酪副产物乳清,浓缩乳清蛋白。通过对膜过滤压力、温度以及乳清pH三个因素进行单因素分析以及正交实验优化,得到最佳工艺条件:操作压力0.25MPa,温度51℃,pH6.1,此条件下超滤膜渗透通量达到169.37L/m2.h,乳清蛋白可浓缩至5.4%,经喷雾干燥制得WPC蛋白质含量为38.2%。   相似文献   

8.
采用孔径为20nm的无机陶瓷膜超滤干酪副产物乳清,浓缩乳清蛋白。通过对膜过滤压力、温度以及乳清pH三个因素进行单因素分析以及正交实验优化,得到最佳工艺条件:操作压力0.25MPa,温度51℃,pH6.1,此条件下超滤膜渗透通量达到169.37L/m2.h,乳清蛋白可浓缩至5.4%,经喷雾干燥制得WPC蛋白质含量为38.2%。  相似文献   

9.
对膜分离大豆乳清蛋白进行了探讨,讨论了截留分子量、压力、温度、pH值对超滤的影响。结果表明:采用截留分子量10000的膜超滤,超滤压力0.2MPa,超滤温度40~50℃,超滤pH值7.5,蛋白质的截留率达90%以上,总糖透过率为80%以上。  相似文献   

10.
膜分离大豆乳清蛋白的研究   总被引:6,自引:0,他引:6  
对膜分离大豆乳清蛋白进行了探讨,讨论了截留分子量、压力、温度、pH值对超滤的影响。结果表明:采用截留分子量10000的膜超滤,超滤压力0·2MPa,超滤温度40~50℃,超滤pH值7·5,蛋白质的截留率达90%以上,总糖透过率为80%以上。  相似文献   

11.
Chemical and nutrient composition and functional properties of whey protein concentrates from ultrafiltration of sweet and acid wheys were studied for potential food uses. Vitamins passed readily through the membrane; thus, vitamin content was slightly higher than in whey. Amino acid values were considerably higher, increasing in direct proportion to increases in protein. Lysine availability was not significantly affected by fractionation or by subsequent beat treatment. Since this process results in substantial removal of minerals along with the permeate, the protein to ash ratio of the protein concentrate increased. Unlike most other methods of recovering protein from whey, solubility was not adversely affected by ultrafiltration. However, protein concentrates were susceptible to heat; normal pasteurization temperatures resulted in approximately 20% denaturation. Whey protein exhibited excellent water retention. Addition of 1.5% protein to skim milk followed by heating formed a custard-like gel with sufficient body to stand alone without leakage. Approximately twice as much egg albumin was required to achieve comparable results. Whipping properties were very good when butterfat content was less than 2%. Excellent stable whips could be produced by a combination of heat and pH adjustment.  相似文献   

12.
This work compared laboratory-scale flat-sheet and pilot plant-scale spiral-wound wide-pore, negatively-charged ultrafiltration membranes for concentration of whey proteins. By placing a negative charge on the surface of ultrafiltration membranes, a wider pore size could be used to concentrate whey proteins because negatively-charged proteins were rejected by electrostatic repulsion and not simply sized-based sieving. Negatively-charged 100 kDa regenerated cellulose membranes had an 85% higher flux than unmodified 10 kDa membranes, and equivalent protein retention. The pilot plant-scale spiral-wound membranes had 70-fold more area, and a different membrane geometry than the laboratory-scale flat-sheet membranes, yet both membranes were successful in retaining >98% of the whey protein.  相似文献   

13.
超滤膜分离技术回收乳清蛋白工艺研究   总被引:3,自引:1,他引:2  
研究利用超滤膜分离技术,从干酪素乳清废弃液中回收乳清蛋白,通过对不同超滤膜性能的比较,选择最佳的超滤膜材料、工艺流程以及运行参数,并测得分离效果。结果表明:采用PW2540型聚醚砜卷式超滤膜较好,其最佳工艺参数为操作温度35℃,操作压力0.5MPa,且超滤膜透液通量较高,运行稳定。乳清蛋白粉中蛋白质含量72.40%,灰分3.85%。经红外光谱检测证明乳清蛋白粉品质得到较大程度的提高。每吨乳清废弃液中可回收乳清蛋白粉5.13kg,具有较好的经济效益及减排环保效益。  相似文献   

14.
考察了pH、催化时间、催化温度及加酶量对转谷氨酰胺酶作用WPI形成交联产物的粘度影响,并对影响因素进行优化,找出最佳组合。该研究共分两个实验进行,实验1考察pH、时间、温度及加酶量单个因素对转谷氨酰胺酶交联作用的影响;实验2是基于单因素实验结果,采用四因素(pH、催化时间、催化温度、加酶量)五水平回归正交旋转设计,对WPI经转谷氨酰胺酶交联后产生最大粘度的最佳条件进行优化,以便确定实验多元回归方程和获得较大WPI黏度的最佳条件。实验结果表明:交联时间4h、交联温度50℃、pH8.0和加酶量20u/g时,具有最佳粘度值,转谷氨酰胺酶作用效果最佳。  相似文献   

15.
试验采用先加热(70~90℃)后氧化(0.1 mmol/L Fe Cl_3+1 mmol/L抗坏血酸+0~20 mmol/L H_2O_2,加热→氧化)和同样加热温度和氧化剂浓度的先氧化后加热(氧化→加热)2种处理方式,分别来模拟羟基自由基作为氧化交联剂以及实际蛋白体系中的氧化反应,其目的是探讨羟基自由基氧化乳清蛋白对其所成膜的光学和水化性质的影响。研究结果表明,2种氧化方式均能促进蛋白质共价交联;提高膜的白度、绿度值,降低黄度;氧化剂H_2O_2浓度超过5 mmol/L所形成膜的蛋白易溶解浸出。电泳试验确定浸出物主要由二硫键交联的α乳白蛋白、β乳球蛋白聚合物。温度和p H值的提高则均能降低膜蛋白的溶解度、提高膜的透明性。微观结构表征确定了氧化造成膜的多孔性而引起膜材料水化性能的变化。  相似文献   

16.
The effects of pH and heat treatment of cheese whey on protein solubility (PS) at pH 4.6 and on emulsifying properties of whey protein concentrate (WPC) were studied by response surface methodology (RSM). PS followed a quadratic relationship with pH and a linear relationship with heat treatment. Highest values for PS were found between pH 6.0 and 6.6 with heat treatment at 68 °C for 2 min, and maximum solubility was reached at pH 6.3. Heat treatment strongly decreased protein solubility throughout the entire pH range. The emulsifying properties were notably benefited by raising the pH from 6 to 7, best values being shown at pH 7 with a heat treatment of 70 °C for 2 min. The effect of heat treatment on the emulsifying properties was dependent on the pH level. At about pH 7, the heat treatment adversely affected the emulsifying properties, probably due to excessive protein denaturation.  相似文献   

17.
Salty whey is a waste by-product that incurs increasingly high disposal costs for the dairy industry. This study investigated electrodialysis of the ultrafiltration permeate of salty whey as either a concentrate for the treatment of sweet whey or as a source of lactose and salt. The type of concentrate (0.1 m NaCl or salty whey permeate) did not affect the rate of sweet whey demineralisation or the energy consumed per tonne of whey, but less sodium and more divalent cations were removed when salty whey permeate was used as the concentrate. Salty whey permeate could be effectively demineralised using either 0.1 m NaCl or a second stream of salty whey permeate as the concentrate. The concentrate purity could be enhanced using monovalent selective membranes without increasing the energy consumption of the process (3.2 ± 0.3 kWh per kg of NaCl removed from the diluate at 15 V).  相似文献   

18.
A polyethersulphone ultrafiltration membrane was prepared for concentration of whey. The membrane was fouled by whey and the effect of different cleaning agents on flux recovery of the fouled membrane was studied. The optimum cleaning procedure for membrane regeneration was elucidated. The results showed that a combination of surfactants (anionic, cationic and nonionic) may be employed as the optimum cleaning agent for maximum flux recovery. The fluorescence studies revealed that the cationic surfactant interact with proteins by breaking the intra‐chain hydrophobic bonding and providing electrostatic repulsion. Changing the alkyl chain from dodecyl to hexadecyl increases the interaction of surfactant–protein. Dodecyltrimethylammonium bromide (DTAB) provided a weak interaction with whey proteins than to tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB). All data obtained in this study support a surfactant–protein interaction in which hydrophobic forces play a dominant role. The nonionic surfactants poly(oxyethylene) isooctyl phenyl ether (TX‐100) and anionic surfactants SDS interact with amino acids in the inner protein structure thus denaturate tertiary protein structure and reduce hydrophobic interaction of proteins by membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号