首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This paper analyzes recent developments regarding Missouri River management and water use, and the potential for an emerging inter-basin water dispute involving the Great Lakes. It is suggested that revisions to the U.S. Army Corps of Engineers' master manual for the Missouri River and increasing efforts to put Missouri River water to beneficial use in support of economic growth present the prospect of low water levels in the Mississippi River. With a history of looking to the Chicago diversion as a source for augmenting flows in the Mississippi River, it may yet again prove to be an irresistible temptation. The institutional capacity for managing such a water dispute seems surprisingly weak. The direction suggested is that mechanisms should be installed to ensure that Great Lakes water remains in its basin, consistent with watershed management practices. The recent efforts by the Great Lakes states and provinces represent an important development in this direction. It is further suggested that demand pressures in the Missouri River should be met through a similar commitment, potentially through a water sharing arrangement on the Missouri River, something which could be encouraged in part by ensuring stricter controls on the Chicago diversion.  相似文献   

2.
The Great Lakes are a vital resource for drinking water and recreation and provide a major fishery for millions of people. As part of the Great Lakes Water Quality Agreement, the US and Canadian governments have been charged with the protection of this system. Persistent, bioaccumulative, and toxic (PBTs) contaminants were found to be affecting the lake water quality as early as the late 1960s, and various programs sponsored by the US and Canada have been created to monitor PBTs such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). These programs have refined measurement techniques to quantify trace level contaminants using a targeted analytical approach. However, new PBTs are being detected in the environment, and the traditional targeted methodology is inadequate for understanding the complex chemical mixture affecting Great Lakes wildlife. Fortunately, new analytical technologies are emerging that allow for comprehensive screening of PBTs beyond targeted methods. The current commentary presents an outline of a new framework for contemporary monitoring programs. The goal is to facilitate the compilation of legacy, emerging PBT, and archive PBT signatures by utilizing the basic practices of traditional targeted analysis. This example focuses on fish monitoring programs, and how they are ideally suited for legacy monitoring as well as data-driven discovery of new chemicals of concern.  相似文献   

3.
The U.S. EPA Great Lakes National Program Office (GLNPO) implements long-term monitoring programs to assess Great Lakes ecosystem status and trends for many interrelated ecosystem components, including offshore water quality as well as offshore phytoplankton, zooplankton and benthos; chemical contaminants in air, sediments, and predator fish; hypoxia in Lake Erie's central basin; and coastal wetland health. These programs are conducted in fulfillment of Clean Water Act mandates and Great Lakes Water Quality Agreement commitments. This special issue presents findings from GLNPO's Great Lakes Biology Monitoring Program, Great Lakes Water Quality Monitoring Program, Lake Erie Dissolved Oxygen Monitoring Program, Integrated Atmospheric Deposition Network, Great Lakes Fish Monitoring and Surveillance Program, and Great Lakes Sediment Surveillance Program. These GLNPO programs have generated temporal and spatial datasets for all five Great Lakes that form the basis for assessment of the state of these lakes, including trends in nutrients, key biological indicators, and contaminants in air, sediments and fish. These datasets are used by researchers and managers across the Great Lakes basin for investigating physical, chemical and biological drivers of ongoing ecosystem changes; some of these analyses are presented in this special issue, along with discussion of new methods and approaches for monitoring.  相似文献   

4.
Understanding of the complexities of both public policy implementation and Great Lakes restoration has grown in sophistication since the 1970s. The Great Lakes Water Quality Agreement is the principal policy for reversing environmental decline in the region. Implementation of this and related policies, particularly by the federal governments, suffers from acute and chronic deficits that we summarily document. These policy implementation deficits will continue to frustrate efforts to revitalize the Great Lakes unless significant advances are made to design governance processes within the Great Lakes regime that accommodate the complexity of linked social and ecological systems. The 2010-2011 governmental process to renegotiate the Great Lakes Water Quality Agreement is a potent opportunity to begin to overcome institutional barriers to reducing policy deficits. We argue that the renegotiation must begin a reinvestment in remaking or reimagining Great Lakes institutions in a way that restores capacity, flexibility, and moral authority. Our purpose is to help provide a foundation for that discussion.  相似文献   

5.
Water quality data for trace elements in the Great Lakes are relatively scarce, complicating the assessment of current trace element baselines and their distribution patterns. Here, we present concentration data for >40 major and trace elements in >100 samples from the Great Lakes connecting channels, surface waters, precipitation and select Canadian tributaries, to establish a high-level assessment of loading rates across the basin. Contrasting upstream-to-downstream trends were observed for the investigated trace elements, ranging from net-decreasing (>5-fold for e.g., Co, Tl, Y) to net-increasing surface water concentrations (>2-fold for e.g., Sb, U, As). Calculated loading rates reveal different, element-specific controls of runoff, connecting channel loads or precipitation on trace element occurrence. Lake-wide elemental mass-balances could be reasonably closed for conservative trace elements (e.g., Li, <53% residual) but not for others (e.g., rare earth elements with up to 5-fold discrepancies), reflective of general data scarcity and uncertainty in loading rates. In line with major water quality trends, spatial distribution patterns in Lakes Erie and Ontario display subtle near-shore to off-shore heterogeneity for a few trace elements (<1 order-of-magnitude for V or Se), but higher variability for trace elements with significant inputs derived from tributaries. This work provides important quantitative baseline data for trace elements in the Great Lakes that may help optimize surveillance and management strategies for the preservation of Great Lakes water quality.  相似文献   

6.
The Great Lakes contain most of the United States’ surface freshwater and provide deep personal and economic connections for the residents of the region. These connections create an opportunity for bipartisanship in environmental policies with the potential to permeate energy policies. To explore that possibility, this paper examines how party affiliation affects support for water policy and energy policy in the Great Lakes region of the United States. Data from the Great Lakes Region Public Opinion Survey asked 696 Republicans, Independents, and Democrats from the Great Lakes region to respond to a range of environmental policy prompts. Responses to the policy prompts are grouped into four components: Water Quality, Water Diversions, Traditional Fuels, and Renewables. The results find that there is bipartisan support for the Water Quality and Water Diversions components. Energy policies do not receive the same bipartisan support, with Democrats and Independents having more support for the Renewables component while Republicans have more support for the Traditional Fuels component. However, when the fuel source is tied to its pollutants of the Great Lakes, then reactions to that fuel source receive a bipartisan response. The results of this research suggest that embedding water policy in energy policy may allow those policies to receive more bipartisan support. Combining water policy and energy policy can depolarize some of the politics surrounding environmental policy broadly.  相似文献   

7.
The concern about other states diverting water from the Great Lakes has prompted the Great Lakes States and provinces to adopt institutional arrangements that have effectively blocked any new diversions.Since the current arrangements do not allow diversions, important opportunities may be lost in the future. This article considers the possibility of 'economically desirable diversions' and how the gains should be allocated among the states and provinces to foster cooperation. The study shows that in most cases, new institutional arrangements will be needed before agreements can be reached. Game theory is used to determine how coalitions may be formed to reach cooperative agreements for diversions. Five different lake diversion games are tried involving Lake Ontario, Lake Superior, Lake Erie, Lake Michigan-Huron, and finally, all the lakes together. Diversions from Lake Ontario may offer the best opportunity for cooperation since there are no interlake effects.  相似文献   

8.
Satellite observations of aquatic colour enable environmental monitoring of the Great Lakes at spatial and temporal scales not obtainable through ground-based monitoring. By merging data from the Coastal Zone Color Scanner (CZCS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly binned images of water-leaving radiance over the Great Lakes have been produced for the periods 1979–1985 and 1998–2006. This time-series can be interpreted in terms of changes in water clarity, showing seasonal and inter-annual variability of bright-water episodes such as phytoplankton blooms, re-suspension of bottom sediments, and whiting events. Variations in Secchi disk depth over Lakes Erie and Ontario are predicted using empirical relationships from coincident measurements of water transparency and remotely-sensed water-leaving radiance. Satellite observations document the extent to which the water clarity of the lower Great Lakes has changed over the last three decades in response to significant events including the invasion of zebra mussels. Results confirm dramatic reductions in Lake Ontario turbidity in the years following mussel colonization, with a doubling of estimated Secchi depths. Evidence confirms a reduction in the frequency/intensity of whiting events in agreement with suggestions of the role of calcium uptake by mussels on lake water clarity. Increased spring-time water clarity in the eastern basin of Lake Erie also corroborates previous observations in the region. Despite historical reports of localised increases in transparency in the western basin immediately following the mussel invasion, image analysis shows a significant increase in turbidity between the two study periods, in agreement with more recent reports of longer term trends in water clarity. Through its capacity to provide regular and readily interpretable synoptic views of regions undergoing significant environmental change, this work illustrates the value of remotely sensing water colour to water clarity monitoring in the lower Great Lakes.  相似文献   

9.
One hypothesis for the transcontinental and intra-Great Lakes basin transfer of round gobies (Neogobius melanostomus) has been that round gobies were pumped into the ballast water of ships. During June 2005 in Lake Erie, we obtained evidence of a vertical migration of round goby larvae, when we collected 167 round goby larvae in surface ichthyoplankton net tows at night and zero during day. These results complemented similar findings from the Muskegon River estuary of Lake Michigan during 2003 and 2004, documenting diel vertical migration for the first time in larval round gobies. We suggest vertical migration behavior may have allowed larval round gobies to be transported to and within the Great Lakes via ballast water and dispersed in the Great Lakes via advection of 6.5–8.5-mm long larvae at the surface. Based on our results, if ballast water was only taken on near the surface during daylight hours from May through September when larval round gobies were present, it would have mitigated the spread of round gobies throughout the Great Lakes.  相似文献   

10.
Groundwater in the Great Lakes Basin (GLB) serves as a reservoir of approximately 4000 to 5500 km3 of water and is a significant source of water to the Great Lakes. Indirect groundwater inflow from tributaries of the Great Lakes may account for 5–25% of the total water inflow to the Great Lakes and in Lake Michigan it is estimated that groundwater directly contributes 2–2.5% of the total water inflow. Despite these estimates, there is great uncertainty with respect to the impact of groundwater on surface water in the GLB. In terms of water quantity, groundwater discharge is spatially and temporally variable from the reach to the basin scale. Reach scale preferential flow pathways in the sub-surface play an important role in delivering groundwater to surface water bodies, however their identification is difficult a priori with existing data and their impact at watershed to basin scale is unknown. This variability also results in difficulty determining the location and contribution of groundwater to both point and non-point source surface water contamination. With increasing human population in the GLB and the hydrological changes brought on by continued human development and climate change, sound management of water resources will require a better understanding of groundwater surface–water interactions as heterogeneous phenomena both spatially and temporally. This review provides a summary of the scientific knowledge and gaps on groundwater–surface water interactions in the GLB, along with a discussion on future research directions.  相似文献   

11.
198 7年后 ,加拿大的水利工作进入了可持续水管理的新阶段 .其特点是 :以构筑支撑社会可持续发展的水系统为水管理目标 ,以确保当代人和下代人用水权的平等为水管理道德理念 ,以水不仅是可供人类消费的物质资源 ,而且是生态系统的重要组成部分为水管理准则 ;通过将原来分布于政府诸多机构的水管理权集中于一个或少数几个机构的方式重组水管理机构 ;水管理机构普遍把生态系统方法作为可持续水管理的一种基本方法 ,将水与生态环境、社会经济等联在一起 ,将水管理与土地、森林等环境资源的管理联在一起 .中国今天的水管理工作不仅要为当代人服务 ,也要为后代人服务 .为实现我国水资源的可持续利用 ,在构建“资源水利”体系过程中 ,应通过重组水管理机构适当集中水政管理权 ;要重视将水资源的管理与其它资源的管理联系在一起 ,在规划和配置水资源时 ,多考虑生态环境和社会经济因素  相似文献   

12.
In 1985, remedial action plan development was initiated to restore impaired beneficial uses in 42 Great Lakes Areas of Concern (AOCs). A 43rd AOC was designated in 1991. AOC restoration has not been easy as it requires networks focused on gathering stakeholders, coordinating efforts, and ensuring use restoration. As of 2019, seven AOCs were delisted, two were designated as Areas of Concern in Recovery, and 79 of 137 known use impairments in Canadian AOCs and 90 of 255 known use impairments in U.S. AOCs were eliminated. Between 1985 and 2019, a total of $22.78 billion U.S. was spent on restoring all AOCs. Pollution prevention investments should be viewed as spending to avoid future cleanups, and AOC restoration investments should be viewed as spending to help revitalize communities that has over a 3 to 1 return on investment. The pace of U.S. AOC restoration has accelerated under the Great Lakes Legacy Act (GLLA) and Great Lakes Restoration Initiative (GLRI). Sustained funding through U.S. programs like GLRI and GLLA and Canadian programs such as Canada-Ontario Agreement Respecting Great Lakes Water Quality and Ecosystem Health and the Great Lakes Protection Initiative is needed to restore all AOCs. Other major AOC program achievements include use of locally-designed ecosystem approaches, contaminated sediment remediation, habitat rehabilitation, controlling eutrophication, and advancing science. Key lessons learned include: ensure meaningful public participation; engage local leaders; establish a compelling vision; establish measurable targets; practice adaptive management; build partnerships; pursue collaborative financing; build a record of success; quantify benefits; and focus on life after delisting.  相似文献   

13.
Lake Champlain shares a geological history with the Great Lakes and, as part of the St. Lawrence drainage, also shares biological and ecological similarities. The complex bathymetry and extensive shoreline provide a variety of lacustrine habitats, from deep oligotrophic areas to shallow bays that are highly eutrophic. The large basin:lake ratio (19:1) makes Lake Champlain vulnerable to impacts associated with land use, and in some parts of the lake these impacts are further exacerbated by limited water exchange among lake segments due to both natural and anthropogenic barriers. Research in Lake Champlain and the surrounding basin has expanded considerably since the 1970s, with a particularly dramatic increase since the early 1990s. This special issue of the Journal of Great Lakes Research brings together 16 reports from recent research and monitoring efforts in Lake Champlain. The papers cover a variety of topics but primarily focus on lake hydrodynamics; historical and recent chemical changes in the lake; phosphorus loading; recent changes in populations of phytoplankton, zooplankton, and fishes; impacts of invasive species; recreational use; and the challenges of management decision-making in a lake that falls within the legal jurisdictions of two U.S. states, one Canadian province, two national governments, and the International Joint Commission. The papers provide not only evaluations of progress on some critical management issues but also valuable reference points for future research.  相似文献   

14.
Little is known of mudpuppy (Necturus maculosus) population structure and ecology; some populations in the Great Lakes are thought to be in decline. Mudpuppies are the obligate hosts for the mudpuppy mussel (Simpsonaias ambigua), a species that is endangered in Canada and in many Great Lakes states. We surveyed mudpuppies from the Sydenham River, the only known Canadian locality of the mudpuppy mussel, in order to generate information on relative density, deformity rates and population age/size structure and used this information to compare them to known mudpuppy populations from Great Lakes sites in the Detroit River, Lake St. Clair and Long Point in Lake Erie. Deformity rates were elevated at some sites in the Sydenham River. The relative density of mudpuppies in the Sydenham River was lower than that of other Great Lakes sites and their age was skewed towards younger individuals. Although at lower densities than at other Great Lakes sites, the mudpuppy population in the Sydenham River appears stable and is showing signs of recruitment which bodes well for the future of the mudpuppy mussel population of the river.  相似文献   

15.
In 2013 the Laurentian Great Lakes are at historically low levels; but they will undoubtedly rise again as they always have in an ongoing pattern of seasonal, annual and decadal fluctuations. Those fluctuations, coupled with other physical dynamics unique to the Great Lakes system, will continue to shift shorelines lake-ward and land-ward dramatically over time, perhaps more so because of increased storminess from climate change. These shifting shores implicate legal doctrines that attempt to balance public interests and private property rights at the shore, and they complicate the Great Lakes states' efforts to effectively and fairly manage their Great Lakes shorelands. One challenge comes from using an elevation-based standard to mark ordinary high water, a method that is difficult conceptually to administer and that yields multiple marks over time. We describe briefly Great Lakes shoreline dynamics and the application of state Public Trust Doctrines to those shorelines, and we discuss in detail recent litigation in Michigan regarding use of an elevation-based standard to mark ordinary high water, illustrating the inherent problems with that standard. We conclude that the elevation-based standard should be abandoned, or if not abandoned applied in a manner to adequately safeguard public trust shorelands.  相似文献   

16.
The Great Lakes Basin plays an important role in the economy and society of the United States and Canada, and climate change in this region may affect many sectors. In this study, six GCM simulations were downscaled to resolve the Great Lakes using a regional climate model (RCM) with 25 km × 25 km resolution. This model was used to project changes in temperature and precipitation during the mid-century (2040–2069) and late-century (2070–2099) over the Great Lakes basin region with reference to a baseline of 1980–2009. The whole-basin annual mean temperature is projected to increase 2.1 °C to 4.0 °C above the baseline during the mid-century, and 3.3 °C to 6.0 °C during the late-century. Summer temperatures in the southern portion of the basin are projected to increase more than the temperatures in the northern portion of the basin; whereas winter temperatures are projected to increase more in the north than in the south. Estimates of the whole-basin annual precipitation with respect to the baseline vary from −3.0% to 16.5% during the mid-century and −2.9% to 21.6% during the late-century, respectively. Future summer precipitation in southwestern areas of this region is expected to decrease by 20%–30% compared to the baseline, but winter precipitation (mostly snow) is expected to increase by 11.6% and 15.4% during the mid-century and late-century. This study highlights the effects of the large expanses of water (such as the Great Lakes) on regional climate projections and the associated uncertainties of climate change.  相似文献   

17.
Demand-side management should be used to maximize the efficiency of groundwater use. Implementation of conservation measures would decrease the volume of water use and also exert less pressure on the water distribution system as well as the wastewater treatment system. Allocation of ground water in the Great Lakes basin must conform to priorities established at the community level. Groundwater pricing should reflect the full costs arising from ground water use. A differential pricing structure would help conserve water in the residential and industrial sectors. A user-friendly database on ground water use, quality and quantity for the entire Great Lakes basin is also essential. New policies for sustainable groundwater allocation, regulating water prices for water conservation, conservation education, pollution prevention, recycling and reuse of water as well as effective information management provide new directions for managing the groundwater demand in the Great Lakes basin.  相似文献   

18.
A summary of a special workshop held at the Canada Centre for Inland Waters, Burlington, Ontario, 2–3 December 1981, is presented. The purpose of the workshop was to air some differences of opinion regarding the response of the hypolimnetic anoxia of Lake Erie to phosphorus controls. The workshop confirmed the validity of the 1978 U.S.-Canadian Great Lakes Water Quality Agreement's goals on restoring year-round aerobic conditions in the hypolimnion of the central basin of Lake Erie through phosphorus loading reduction. The author served as workshop chairman and convenor.  相似文献   

19.
Boundary organizations are institutions that interface between science and policy by facilitating interactions between scientists, policy specialists, and other stakeholders to inform collaborative decision-making. Natural resource management in the Great Lakes Basin is complex and a shared exercise among two federal governments, eight states, two provinces, and over 200 sovereign Tribes, First Nations, and Métis. Many governmental agencies have recognized a need to effectively engage with other jurisdictions in order to bridge the gaps between scientific knowledge and policy decisions. As a result, boundary organizations have emerged to facilitate planning and implementation of collaborative governance frameworks. This commentary highlights how decades of shared governance of the world’s largest freshwater surface water system is augmented and assisted by boundary organizations in addressing two key Great Lakes management issues – Western Lake Erie Basin nutrient levels and Lake Michigan fisheries – which are complex, broad in scale, and pose challenges that must be addressed collaboratively across jurisdictions. While there are many governmental and non-governmental entities that engage in boundary organization-like behaviors, this commentary will be centered on three key institutions: The Great Lakes Executive Committee’s Annex 4 (Nutrients) Subcommittee, the Great Lakes Commission, and the Great Lakes Fishery Commission. We illustrate how each organization procedurally engages stakeholders, especially within state and provincial jurisdictions, to produce information and products that add breadth and capacity to manage the ecosystems of the Great Lakes. We also highlight areas of success and opportunities for improvement in collaborative governance frameworks now and into the future.  相似文献   

20.
In Ontario, there is limited comprehensive research regarding the contribution of chloride in groundwater to surface water systems. The delivery of chloride via groundwater can contribute to the degradation of the Great Lakes and their tributaries. Thus, this review intends to fill or identify knowledge gaps regarding assessing groundwater as a potential source of road salt, the single largest use of salt in urban cold region environments, contamination to surface water by synthesizing existing groundwater chloride research in the Lake Ontario Basin. Knowledge regarding source characterization, properties, pathways, and impacts of chloride in the environment is essential to evaluate the contribution of chloride via groundwater. Past groundwater chloride research in the basin is primarily concentrated in highly urbanized areas and has identified localized trends of increasing groundwater chloride concentrations in these regions; however, few investigations have been conducted in varying land uses (e.g., rural or less urbanized watersheds) or at sufficient temporal and/or spatial scales. Significant chloride accumulation is occurring in watersheds and aquifers within the basin. Concentrations are expected to increase until equilibrium is obtained, thus resulting in sustained yearlong elevated concentrations in tributaries. Recently, chloride loading to Lake Ontario has increased significantly, with groundwater inputs having the potential to support long-term increases in chloride concentrations in the lake. However, few studies have evaluated the explicit contribution via groundwater to Lake Ontario, and therefore a knowledge gap continues to exist. We provide a synthesis of additional research priorities to better understand the magnitude of groundwater chloride issues in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号