首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为有效预测煤与瓦斯的突出强度,分析了煤与瓦斯突出的主要影响因素,建立了基于粒子群优化支持向量机方法(PSO—SVM)的煤与瓦斯突出强度预测模型,通过实例对该模型的预测效果进行检验,同时还分别采用了BP神经网络(BP—NN)和支持向量机方法(SVM)对该实例进行了预测,进而对这3种方法的预测精度进行了比较。分析结果表明3种方法的预测准确率PSO—SVM为87.5%、BP—NN为50%、SVM为62.5%。可见,PSO—SVM方法的预测效果要好于BP—NN和SVM,对煤矿煤与瓦斯突出强度预测具有一定的参考价值和指导意义。  相似文献   

2.
煤与瓦斯突出已经成为影响煤矿生产最严重的安全问题和经济问题之一.在国内外有多种用于预测煤与瓦斯突出的方法,包括动态和静态预测,但是这些方法大多只考虑单一的参数,因此它们对煤与瓦斯突出的预测效果并不是很理想.对于近年来应用较为广泛的神经网络,由于其固有的缺陷,对于高维、小样本的情况具有不太理想的预测效果.作者综合考虑了多个因素,并将支持向量机(Support Vector Machine)这一方法应用到煤与瓦斯突出预测中.经过仿真试验,证明这种方法能够取得较好的预测效果.  相似文献   

3.
基于支持向量机的煤与瓦斯突出预测研究   总被引:5,自引:1,他引:5  
煤与瓦斯突出已经成为影响煤矿生产最严重的安全问题和经济问题之一.在国内外有多种用于预测煤与瓦斯突出的方法,包括动态和静态预测。但是这些方法大多只考虑单一的参数,因此它们对煤与瓦斯突出的预测效果并不是很理想.对于近年来应用较为广泛的神经网络。由于其固有的缺陷。对于高雏、小样本的情况具有不太理想的预测效果.作者综合考虑了多个因素,并将支持向量机(Support Vector Machine)这一方法应用到煤与瓦斯突出预测中.经过仿真试验。证明这种方法能够取得较好的预测效果.  相似文献   

4.
基于免疫遗传算法的煤与瓦斯突出预测研究   总被引:3,自引:1,他引:3  
根据影响煤与瓦斯突出的各个因素与突出强度之间存在的复杂的非线性映射关系,建立了突出强度预测的BP网络模型.针对BP网络收敛速度慢和易陷入局部极小值及基于遗传算法的BP网络易出现未成熟收敛问题,提出了一种基于免疫遗传算法(IGA)的BP网络,即利用IGA实现对BP网络的优化.IGA在遗传算法(GA)的基础上引入生物免疫系统中的多样性保持机制和抗体浓度调节机制,有效地克服了GA算法的搜索效率低、个体多样性差及早熟现象,提高了算法的收敛性能.结果表明:将基于IGA的BP网络应用于煤与瓦斯突出强度预测,该算法设计的BP网络具有较快的收敛速度和较强的全局收敛性能,在煤与瓦斯突出预测中取得了良好效果.  相似文献   

5.
为准确预测矿井煤与瓦斯突出的危险性,针对小样本情况下BP神经网络泛化能力低的缺点,采用概率神经网络对煤与瓦斯突出的危险性进行预测.该模型的预测准确性高,能有效地预测煤与瓦斯突出的危险性.  相似文献   

6.
应用神经网络技术进行煤与瓦斯突出预测   总被引:1,自引:0,他引:1  
应用神经网络技术进行煤与瓦斯突出预测包括三步:网络构造、网络训练和网络应用。作者详细讨论了利用BP网络进行煤与瓦斯突出预测的具体步骤及实践体会。  相似文献   

7.
煤与瓦斯突出是一种复杂的非线性地质危害,建立适当的多指标非线性模型是预测的重点.通过采用两个均具有非线性、自主学习、自组织以及并行处理能力的BP及RBF人工神经网络,分别对煤与瓦斯的突出预测问题进行了建模比较.通过对山西某煤矿的实测数据在MATLAB环境下进行了仿真研究及测试,研究了两者在预测准确度和收敛速度方面的区别.仿真结果表明:RBF神经网络预测结果更快速且准确可靠,在煤与瓦斯突出预测方面具有实际应用价值.  相似文献   

8.
摘。要:选取了影响煤与瓦斯突出的5个因素作为属性条件,把突出强度作为目标变量,利用训练样本对朴素贝叶斯分类器模型进行了学习训练,对测试样本进行了预测,从结果来看精确度较高.因此朴素贝叶斯分类器模型预测煤与瓦斯突出强度是有效的.  相似文献   

9.
冲击地压危险等级预测的PSO-SVM模型   总被引:1,自引:0,他引:1  
为了对冲击地压进行有效的预测,分析了冲击地压的主要影响因素,建立了基于粒子群优化支持向量机方法(PSO-SVM)的冲击地压危险程度预测模型,并通过实例,对PSO-SVM模型的预测效果进行了检验,同时还分别采用了BP神经网络(BP-NN)和支持向量机方法(SVM)对实例进行了预测,最后对三种方法的预测精度进行了比较分析,结果显示:PSO-SVM方法的预测精度要高于BP-NN和SVM方法的预测精度,可见,PSO-SVM预测方法对煤矿冲击地压危险程度预测具有一定的参考价值和指导意义.  相似文献   

10.
影响煤与瓦斯突出的因素众多,应用神经网络进行预测时,选取突出预测指标是关键.应用灰色关联分析筛选突出预测指标,结合神经网络建模进行了突出预测,使突出预测指标的选择由定性分析转化为定量分析,实现了灰色理论同神经网络在煤与瓦斯突出预测领域内的结合.  相似文献   

11.
为了对人参价格进行预测,分析了影响人参价格因素,通过K-fold交叉验证方法,利用粒子群算法对支持向量机的惩罚参数c和ggamma值进行寻优,建立起2010年1月~2011年12月林下参的价格预测模型。利用粒子群算法优化惩罚参数c为3.6974,利用radial basis function核函数的SVM(Support Vector Machine)对预测集1的预测相关系数为97.316%。  相似文献   

12.
影响煤与瓦斯突出的因素众多,应用神经网络进行预测时,选取突出预测指标是关键.应用灰色关联分析筛选突出预测指标,结合神经网络建模进行了突出预测,使突出预测指标的选择由定性分析转化为定量分析,实现了灰色理论同神经网络在煤与瓦斯突出预测领域内的结合.  相似文献   

13.
煤与瓦斯突出预测的改进差分进化神经网络模型研究   总被引:2,自引:0,他引:2  
鉴于常规煤与瓦斯突出BP预测模型的不足,将改进DE算法用于BP网络模型参数的优化及训练,提出结合两者优点的改进差分进化神经网络(IDEBP)煤与瓦斯突出预测模型.模型通过对变异模式、变异交叉因子自适应确定等改进,有效提高了标准DE的性能.实现了DE全局优化搜索与BP自适应、自学习的有机结合,稳健性得到加强,更能充分辨识煤与瓦斯突出样本的复杂非线性知识.以36组工程实例数据,进行了IDEBP和DEBP模型与BP模型仿真对比实验.结果表明:该模型能有效避免常规BP的不足,在收敛迅速、结果辨识和预测精度等方面均大为提高,为瓦斯智能预测提供了新的解决方案.  相似文献   

14.
在支持向量机的实现过程中,如果用于训练的样本数很大,则标准的二次型优化技术就很难应用。针对在大规模训练中算法收敛速度慢、复杂程度高等问题,提出用粒子群算法求解其中的二次规划问题的思想。试验结果表明,用粒子群算法来训练样本集具有容易实现、节省计算成本和提高收敛速度等优点。该方法已经应用在模式识别、数据挖掘、系统辨识与控制等领域。  相似文献   

15.
煤与瓦斯突出区域预测方法探讨   总被引:1,自引:0,他引:1  
采用多参数综合分析方法进行区域性预测,划分突出危险区和突出威胁区的范围,分区、分级管理,指导煤矿安全生产。  相似文献   

16.
煤炭需求量预测的支持向量机模型   总被引:9,自引:0,他引:9  
根据选择的嵌入维数,建立了基于支持向量回归的中国煤炭需求量预测模型.用1980-2002年的中国煤炭需求量构造了支持向量机的输入向量和输出向量;经过与线性核函数及Sigmoid核函数的对比,选用基于径向基函数(RBF)作为校函数,在分析预测误差和模型参数关系的基础上,选择了合适的参数;建立了多输入、单输出的支持向量机(SVM)预测模型.用检验样本与基于RBF神经网络模型的预测进行了比较,结果表明支持向量机模型在训练样本较少的情况下,仍有较高的预测精度和较强的泛化能力,证明了该模型时近期的预测是可靠的.最后用训练好的支持向量机模型很好地预测了2003-2006年我国的煤炭需求量.  相似文献   

17.
电力负荷预测通常采用神经网络方法,该方法训练时间较长,并且由于负荷受到气象因素影响,该算法预测的精度不是很高.为了克服当前存在的问题,采用粒子群算法优化BP神经网络的权值和阈值,归一化处理气象因素,利用神经网络预测短期电力负荷.实验结果表明,该方法比单纯BP神经网络预测具有明显优势.  相似文献   

18.
电磁辐射法预测煤与瓦斯突出原理   总被引:40,自引:0,他引:40  
研究了瓦斯对电磁辐射(EME)的影响规律及影响机制,对电磁辐射法预测煤与瓦斯突出原理进行了探讨,研究结果表明:煤体变形破裂时,电磁辐射与煤岩体的载荷及变形破裂过程密切相关,煤体中的瓦斯能使电磁辐射增强,瓦斯在煤体中的流动及冲击能产生电磁辐射;电磁辐射强度和脉冲数两项指标综合反映了工作面丧方煤体的突出危险程度,用电磁辐射法预测预报煤与瓦斯突出是可行的,煤岩电磁辐射技术在预测煤与瓦斯突出和冲击地压等方  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号