首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
升温速率对限定条件下烤燃弹热起爆临界温度的影响   总被引:1,自引:0,他引:1  
为研究升温速率与限定条件下烤燃弹热起爆临界温度之间的关系,利用自行设计的烤燃试验装置,以1℃·min~(-1)的升温速率对装有RDX基高能炸药的烤燃弹进行加热,并使壳体外壁温度分别恒定在160,170,180,185,195℃,50 min后观察烤燃弹的响应情况。用FLUENT软件对不同升温速率下烤燃弹的热起爆临界温度进行了数值模拟。结果表明,炸药置于恒定高温环境中比慢速加热更加危险,其发生反应的环境温度更低,响应更剧烈;升温速率为1℃·min~(-1)时,烤燃弹的热起爆临界温度为194.8℃。且随升温速率的提高,烤燃弹的热起爆临界温度缓慢升高,当升温速率大于10℃·min~(-1)时,其热起爆临界温度均为197℃。在给定的条件下,升温速率对烤燃弹点火点的位置无影响,均为中心点火。  相似文献   

2.
不同升温速率下炸药烤燃模拟计算分析   总被引:3,自引:5,他引:3  
王沛  陈朗  冯长根 《含能材料》2009,17(1):46-49
为了研究不同升温速率条件下炸药热反应规律,建立了炸药烤燃模型,利用计算流体力学软件,对固黑铝炸药(GHL)在不同升温速率下的烤燃过程进行了数值模拟计算.采用Arrhenius定律描述炸药自热反应,根据在1 K·min-1升温速率下固黑铝炸药烤燃实验测量的温度-时间曲线,确定了固黑铝炸药的活化能和指前因子分别为180.2 kJ·mol-1和2.1674 s-1; 分别对3.3 K·h-1,1 K·min-1,3 K·min-1和10 K·min-1四种不同升温速率下固黑铝炸药烤燃过程进行了数值模拟计算分析.结果表明,升温速率对炸药点火时间和点火位置有很大影响.升温速率增大,炸药点火时间缩短,点火位置从炸药内部移向炸药边缘.升温速率对炸药点火温度影响很小,但慢速烤燃下炸药点火时的环境温度比快速烤燃低.  相似文献   

3.
针对弹药在制造、存储、运输及实战等环境中遭受意外热刺激的问题,对不同升温速率下引信烤燃的热响应规律进行了研究。以1,1-二氨基-2,2-二硝基乙烯(FOX-7)装药引信为研究对象,建立了考虑引信各部件热膨胀作用的烤燃计算模型,采用ANSYS Workbench软件对0.5 K/min,1 K/min,2 K/min,3 K/min,4 K/min,5 K/min和6 K/min七种不同升温速率下引信烤燃的热传导和热膨胀过程进行热力耦合计算,得到了引信的点火位置、点火时间、点火温度、形变量以及等效应力。仿真计算结果表明:随着升温速率的增加,点火位置由传爆药柱中心向传爆药边缘位置移动,最终出现在导爆药柱中;点火时间缩短,而变形量先增大后减小;传爆序列的最大等效应力均位于传爆药柱中;升温速率对点火温度的影响较小。  相似文献   

4.
慢烤过程中热应力对HMX基含铝炸药装药响应特性的影响   总被引:1,自引:1,他引:0  
沈飞  屈可朋  王胜强  邢晓玲  王辉 《含能材料》2018,26(10):869-874
为获得炸药装药在慢烤过程中热应力的变化规律,设计了一套热应力测试装置,获得了奥克托今(HMX)基含铝炸药装药在密闭约束条件下热应力随温度的变化曲线;通过调整烤燃弹内惰性包覆层与装药的体积比,改变慢烤过程中装药热应力的上升速率,研究了烤燃弹临界响应温度及其三种工况下的响应剧烈程度。结果表明,壳体的约束作用使得装药的热应力随着温度的上升而逐渐增大,根据热应力变化速率的差异,可将整个过程分为6个阶段,其影响因素依次为热膨胀、孔隙率下降、HMX晶型转变、HMX缓慢分解、部分小分子气体泄漏、HMX加速分解,当温度升至208℃时,热应力达到9.2 MPa,装药随即点火;在烤燃弹的装药表面增加热膨胀性较强的硅橡胶包覆层,则会加快装药热应力的增长速率,使得装药的临界点火温度下降,但不会改变装药响应的剧烈程度。  相似文献   

5.
针对引信内部装药对引信不敏感性影响不清晰的问题,通过有限元分析不同装药下引信在烤燃条件下的响应过程和规律。采用ABAQUS软件仿真,应用炸药多步热分解反应数学模型模拟炸药热分解过程,研究了快速烤燃与慢速烤燃两种情况下,装药中钝感剂的比例以及装药种类对引信不敏感性的影响。研究结果表明,钝感剂的比例从2.5%上升到15%,点火温度、壳体温度和点火时间的变化都在0.4%以内,几乎没有影响。当使用TATB作为传爆药时,相较于原引信的钝化黑索今,慢速烤燃试验条件下点火温度和壳体温度提升了80 K左右,点火时间延长了55.4%,快速烤燃试验条件下,点火温度和壳体温度提升了超过100 K,点火时间延长了50.3%,显著提高了引信的热安全性。同时当升温速率由3.3 K/h提升至0.05 K/s时,点火位置由导爆药处变为传爆药柱顶部。慢速烤燃和快速烤燃试验条件下,均无需考虑钝感剂/粘合剂的占比影响。换用更为钝感的炸药时,为了适应点火位置的变化,也可能要对引信结构进行改进。  相似文献   

6.
为了研究凝聚炸药在不同热烤温度下的热分解情况及相应规律,文中采用以RDX为基的高能炸药,以1℃/min的升温速率并采用恒温控制技术,进行了不同温度下的热烤试验,利用FLUENT软件对不同温度下的热爆炸延滞期进行了数值模拟。结果表明,烤燃温度对凝聚炸药的热分解有重要影响,在1℃/min的升温速率条件下,当恒定温度达到178℃后,实验用高能炸药发生自加热反应,最终导致点火;随着炸药装药量的增加,炸药热起爆临界温度在逐渐降低。  相似文献   

7.
炸药多点测温烤燃实验和数值模拟   总被引:7,自引:2,他引:5  
陈朗  马欣  黄毅民  伍俊英  常雪梅 《兵工学报》2011,32(10):1230-1236
为了研究炸药热反应规律,采用多点测温的烤燃实验装置,对PBXC10炸药进行了不同加热速率下的烤燃实验,测量了从炸药边沿到炸药中心不同位置的温度变化.建立了炸药烤燃实验计算模型,对炸药热反应过程进行了数值模拟计算.根据实验测量的炸药温度与时间曲线,标定了PBXC10炸药指前因子和活化能,分析了不同加热速率下炸药热反应特征...  相似文献   

8.
张坤  智小琦  肖游  王帅 《兵工学报》2023,(4):1139-1147
为理论分析凝聚炸药慢速烤燃过程,及为烤燃研究奠定理论基础,根据炸药的热传导理论方程,利用叠加原理和分离变量法,将炸药非反应性热传导项与自热反应热传导项拆分,推导得到凝聚炸药一维慢速烤燃模型的温度分布解析解。计算并分析自热反应温度最高值所在位置随加热时间的变化规律以及自热反应温度最高值及温度梯度随厚度的变化规律。根据慢烤试验结果,对温度沿轴向的分布情况进行验证;利用数值计算方法对药柱烤燃的点火点位置、点火温度及时间进行验证。研究结果表明:理论确定的点火点位置与试验测量的点火点位置相符,理论确定的计算结果与数值计算结果吻合;对于一维RDX炸药,自热反应最高温度所在位置的变化从始至点火不足2%,即炸药自热反应的最高温度所在位置在烤燃过程中几乎不变;且当炸药厚度达到0.3 m后,随着炸药厚度的增加,点火点位置至边界的距离趋于恒定值0.015 m,炸药内部温度梯度相似。  相似文献   

9.
胡平超  李涛  刘仓理  傅华  薛洪  胡顺治 《含能材料》2023,(10):1035-1040
为了认识初始自由空腔对约束奥克托今(HMX)基PBX-3炸药慢烤反应烈度的影响,以圣地亚热点火(SITI)实验装置为参考,设计了初始自由空腔体积率分别为1.0%和7.4%的弱约束慢烤实验装置。在相同的温升速率下开展了约束HMX基PBX-3炸药慢烤实验,通过小尺寸K型热电偶测量炸药中心平面不同位置以及壳体表面的温度变化历程,采用耐高温光子多普勒测速探头测量炸药热爆炸后壳体的运动速度,并在慢烤箱中回收实验装置残骸。结果表明:在相同的壳体约束强度和加温条件下,2种不同初始自由空腔体积率的约束PBX-3炸药均在中心区域首先发生点火反应;初始自由空腔体积率为1.0%时,热爆炸时刻壳体表面的温度更高,炸药整体温度更高,炸药点火反应后壳体加速更快、速度更高,实验装置残骸碎片更小,反应烈度更高。分析认为:初始自由空腔体积率为1.0%时,热爆炸前炸药受到的应力更大,炸药损伤更严重;炸药中心点火反应后,更大的热应力使得炸药点火反应产生的气体在中心聚集形成更高的压力,炸药燃烧速率更大,燃烧产生的高温气体更容易进入微裂纹,形成更强的对流燃烧,导致压力增长速率更快,炸药反应更剧烈。  相似文献   

10.
模块装药快速烤燃特性的数值预测   总被引:1,自引:1,他引:0  
刘静  余永刚 《含能材料》2019,27(5):371-376
为了研究模块装药的热安全性,基于可燃药盒材料和单基药的化学反应机理,建立了模块装药的二维非稳态烤燃模型。在外界升温速率为1~10 K·min~(-1)下,分析了模块装药的快速烤燃响应特性。结果表明,模块装药最初的着火位置均是在靠近可燃药盒内壁面左右两侧的单基药中,点火区为两个环形响应区。随着升温速率的提高,环形响应区将从单基药内向药盒内壁面方向移动,但外界升温速率的变化对模块装药点火位置的影响较小。在1,6,10 K·min~(-1)升温速率下,单基药发生烤燃响应的点火温度分别为458.2,453.9 K和455.7 K,与文献中实验所测得的点火温度(443~463 K)基本吻合。外界升温速率的变化对模块装药发生烤燃响应的点火温度影响较小,但随着升温速率的提高,模块装药发生烤燃响应的点火时间呈指数型衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号