共查询到18条相似文献,搜索用时 46 毫秒
1.
为了在有效去除可见光图像噪声的同时最大限度地保持图像的边缘、纹理等细节,将已有的目标尺度改进为小数目标尺度以便更精确地反映局部目标结构的大小,提出了基于小数目标尺度的自适应高斯滤波和基于小数目标尺度的自适应中值滤波的混合滤波算法。前者通过小数目标尺度来自适应地控制高斯核的尺度和滤波的模板大小,后者利用小数目标尺度自适应地筛选出脉冲噪声点并进行中值滤波,并弥补前者在抑制脉冲噪声方面的不足。理论分析和仿真实验结果均表明,所提出的算法不仅可以去除各种类型的点状噪声,而且在图像细节的保护和信噪比方面优于其他几类传统算法。 相似文献
2.
3.
4.
在分析InSAR干涉相位图特点的基础上,提出了一种新的自适应相位滤波方法。该方法采用多尺度多方向的滤波窗口,可根据干涉条纹的方向和密度,自适应地选择窗口进行加权中值滤波处理。采用真实的ERS-1/2雷达数据生成的干涉图进行去噪对比试验与分析,表明所提出的方法降噪效果显著,且能较好地保持干涉图的边缘信息。 相似文献
5.
6.
基于中值的自适应均值滤波算法 总被引:8,自引:0,他引:8
中值滤波和均值滤波通常被分别用来处理脉冲噪声和高斯噪声.但是当图像同时存在高斯噪声和脉冲噪声时,单独用那种滤波方法都不会达到最好的去噪效果.针对该问题,提出了一种基于中值的改进自适应加权均值滤波算法.该算法采用了一种基于自适应阈值的方法对滤波系数加以优化,使其可以更有效地减少噪声,又可以较好的保持图像的边缘细节信息.实验结果表明,该算法能较好的滤除混合噪声,且滤波效果优于传统的滤波算法. 相似文献
7.
近年来,相关滤波(CF)方法在目标跟踪领域的应用取得了骄人的成绩.本文针对相关跟踪在目标遮挡时效果不佳以及尺度变化方面不敏感的问题,提出了一个有效的遮挡检测机制和尺度变换策略.将跟踪目标以中心为原点分成四块矩形块,通过计算分析四块的峰值响应(Peak-to-Sidelobe Ratio,PSR)来判断目标受遮挡情况.并依据之前四个峰值响应点的位置,提出一个新的自适应尺度更新策略.在具有遮挡,尺度变化,光照变化等问题的公开数据集上对该方法进行测试,仿真实验表明,本文提出的自适应尺度的核相关滤波(OSCF)具有良好的跟踪性能. 相似文献
8.
针对DSST算法对目标方向发生变化时易出现的跟踪丢失问题,提出了一种目标尺度和方向自适应稳健跟踪算法.算法首先提取目标候选区域HOG和HSV特征,通过相关滤波算法构建多特征融合的二维定位滤波器,从而精确确定目标的中心位置.然后,根据方向池用HOG特征构建一维方向相关滤波器确定目标的最佳方向.并通过构建一维尺度相关滤波器确定最佳尺度.最后,根据PSR值变化情况调整相关滤波模型更新的权重,使模型适应目标的变化特征.选取OTB2013部分数据集进行测试,实验结果表明,上述算法距离精度保持在15pixels以内,成功率较DSST算法提高了20.1%,并且展示了上述算法对跟踪目标的尺度和方向变化具有鲁棒性和有效性. 相似文献
9.
自适应尺度目标跟踪算法 总被引:1,自引:0,他引:1
针对复杂情况下变尺度目标跟踪问题,提出一种基于粒子滤波的自适应尺度目标跟踪算法.根据参考目标的颜色分布,将参考目标分为多个区域,每个区域的颜色分布用高斯模型表示,区域的位置关系构成了对参考目标的空间约束;根据目标分割区域的颜色分布和空间约束关系构造目标外观模型,结合粒子滤波搜索目标位置并检测目标的尺度变化.目标外观模型同时包含了空间及颜色信息,提高了跟踪算法在复杂情况下检测目标尺度变化的可靠性和准确性.实验结果表明,该算法在目标具有明显尺度变化、姿态改变和部分遮挡的情况下,可以获得准确和鲁棒的跟踪结果. 相似文献
10.
为了达到良好的图像去雾效果,提出一种高斯自适应多尺度加权滤波去雾算法。通过多尺度最小值加权滤波得到暗通道图像,建立最小通道与高斯函数的关系,线性约束后并经过自适应参数对像素灰度值的调整得到粗级透射率,紧接着对得到的粗级透射率图像进行多尺度加权引导滤波得到优化透射率,结合加权大气光强并依据大气散射模型对图像进行去雾复原处理。实验结果表明,该方法有效地将单幅有雾图像进行了处理,与其他经典算法相比较得到的图像细节显示效果好,很好地恢复了场景的对比度,增加了图像的可见度,具备一定的优异性。 相似文献
11.
针对量测噪声较小的环境下传统滤波算法容易出现偏差增大的实际问题, 基于高斯近似原理, 提出一种基于高斯似然近似的球面径向积分滤波(SRGLAF) 算法. 为进一步解决量测未知环境下的状态估计问题, 充分结合CKF 等确定性采样型滤波算法和SRGLAF 的优势, 设计一种基于高斯似然近似的自适应球面径向积分滤波(ASRGLAF) 算法. 仿真结果表明: SRGLAF 能够提高量测噪声较小环境下的估计精度, 而在量测噪声未知环境中, ASRGLAF 能够有效地进行状态估计, 具有明显的滤波优势.
相似文献12.
基于混沌优化的自适应中值滤波 总被引:10,自引:0,他引:10
提出了用混沌优化的方法进行自适应中值滤波。该滤波是在自适应中值滤波的基础上,将混沌优化与E-中值滤波结合起来输出最佳值。仿真结果表明,这种中值滤波不仅去噪效果较好,而且对噪声污染严重的图像也能很好地保护图像的细节。 相似文献
13.
针对非线性非高斯离散动态系统中的状态估计问题,基于高斯和递推关系,提出一种高斯和状态估计算法GSSRCKF.首先将状态噪声、观测噪声及滤波初值均表示为高斯和的形式,以平方根容积卡尔曼滤波为子滤波器分别估计各高斯子项对应的系统状态;然后结合各子项对应的权值实现全局估计;最后设计高斯子项对应权值的自适应策略,并采用约简控制法降低计算复杂度.仿真结果验证了所提出的算法在滤波稳定性方面的优越性. 相似文献
14.
谢勤岚 《计算机工程与应用》2009,45(16):182-184
作为去除图像中噪声的图像增强技术,常用的图像平滑方法在提高局部信噪比的同时,也使图像产生模糊。为克服上述缺点,引入了自适应高斯滤波器,它结合了高斯滤波器和梯度倒数加权滤波器的特点,同时考虑了图像局部的空间距离和像素距离,以确定参与局部平滑的像素及其权值。该滤波器算法牺牲了简单平滑滤波器的计算性能,但很好地保留了图像的局部特点,特别是边缘和细节。实验比较了该方法与其他常用滤波器的性能,结果证实了该方法的有效性。 相似文献
15.
针对传统高斯建模的初始化问题、参数值的计算依赖于先前所有帧和零散噪点较多等问题,提出了一种改进混合高斯模型的方法,即在初始化每个像素点时采用邻域特性和中值滤波相结合的方法,用来获取更接近实际的初始背景。同时对背景模型的更新提出了改进方法,在原有的背景排序基础上增加“定时清零”策略,使新加入的像素点能快速匹配。最后对特定区域的学习速率进行重新设定,再结合像素点的空间分布特性,达到消除零散噪点和部分空洞的目的。实验结果表明,与传统的混合高斯模型相比,本文算法能准确的检测出运动物体,并对阴影和噪音有一定的抑制作用。 相似文献
16.
介绍了标准中值滤波与有效中值滤波的概念,提出了一种基于自适应多尺度噪声检测的中值滤波器,可用于恢复被椒盐脉冲噪声污染了的图像。滤波器将输入图像像素分为有效信号类、脉冲噪声类和恒定区域类,对各类像素采用不同的方法进行滤波处理。实验结果证明,本文算法的性能比现存的其它许多算法有了显著的提高,而且便于实现。 相似文献
17.
针对遮挡情况下相关滤波算法跟踪精度下降的问题,提出了一种基于多子块联合估计的核相关滤波跟踪方法。首先依据初始帧跟踪框的几何特征对目标自适应分块,并采用KCF方法对各子块独立跟踪得到联合置信图;然后以上帧目标的位置及尺度作为先验信息对搜索区域采样,同时将样本框中置信图的权值密度作为观测值,利用粒子滤波算法实现候选目标的最优估计;最后对置信度较低的子块反向投影至上帧图像进行遮挡检测,防止模板错误更新。定性和定量实验结果表明,该方法与原始KCF算法相比跟踪精度提升约10%,具有良好的抗遮挡性,并对目标尺度变化具有一定的估计能力。 相似文献
18.
目的 尺度突变是目标跟踪中一项极具挑战性的任务,短时间内目标的尺度发生突变会导致跟踪要素丢失,使得跟踪误差积累导致跟踪漂移,为了更好地解决这一问题,提出了一种先检测后跟踪的自适应尺度突变的跟踪算法(kernelized correlation filter_you only look once,KCF_YOLO)。方法 在跟踪的训练阶段使用相关滤波跟踪器实现快速跟踪,在检测阶段使用YOLO(you only look once)V3神经网络,并设计了自适应的模板更新策略,采用将检测到的物体的相似度与目标模板的颜色特征和图像指纹特征融合后的相似度进行对比的方法,判断目标是否发生遮挡,据此决定是否在当前帧更新目标模板。结果 为证明本文方法的有效性在OTB(object tracking benchmark)2015数据集中具有尺度突变代表性的11个视频序列上进行试验,试验视频序列目标尺度变化为0.19.2倍,结果表明本文方法平均跟踪精度为0.955,平均跟踪速度为36帧/s,与经典尺度自适应跟踪算法比较,精度平均提高31.74%。结论 本文使用相关滤波和神经网络在目标跟踪过程中先检测后跟踪的思想,提高了算法对目标跟踪过程中尺度突变情况的适应能力,实验结果验证了加入检测策略对后续目标尺度发生突变导致跟踪漂移的情况起到了很好的纠正作用,以及自适应模板更新策略的有效性。 相似文献