首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the production and destruction, as well as the radiotoxicity of plutonium and minor actinides (MA) obtained from the multi-recycling of boiling water reactors (BWR) fuel are analyzed. A BWR MOX fuel assembly, with uranium (from enrichment tails), plutonium and minor actinides is designed and studied using the HELIOS code. The actinides mass and the radiotoxicity of the spent fuel are compared with those of the once-through or direct cycle. Other type of fuel assembly is also analyzed: an assembly with enriched uranium and minor actinides; without plutonium. For this study, the fuel remains in the reactor for four cycles, where each cycle is 18 months length, with a discharge burnup of 48 MWd/kg. After this time, the fuel is placed in the spent fuel pool to be cooled during 5 years. Afterwards, the fuel is recycled for the next fuel cycle; 2 years are considered for recycle and fuel fabrication. Two recycles are taken into account in this study. Regarding radiotoxicity, results show that in the period from the spent fuel discharge until 1000 years, the highest reduction in the radiotoxicity related to the direct cycle is obtained with a fuel composed of MA and enriched uranium. However, in the period after few thousands of years, the lowest radiotoxicity is obtained using the fuel with plutonium and MA. The reduction in the radiotoxicity of the spent fuel after one or two recycling in a BWR is however very small for the studied MOX assemblies, reaching a maximum reduction factor of 2.  相似文献   

2.
Full recycling of transuranic (TRU) isotopes can in theory lead to a reduction in repository radiotoxicity to reference levels in as little as ∼500 years provided reprocessing and fuel fabrication losses are limited. However, over a limited timeframe, the radiotoxicity of the ‘final’ core can dominate over reprocessing losses, leading to a much lower reduction in radiotoxicity compared to that achievable at equilibrium. In Part I of this paper, TRU recycle over up to 5 generations of light water reactors (LWRs) or sodium-cooled fast reactors (SFRs) is considered for uranium (U) fuel cycles. With full actinide recycling, at least 6 generations of SFRs are required in a gradual phase-out of nuclear power to achieve transmutation performance approaching the theoretical equilibrium performance. U-fuelled SFRs operating a break-even fuel cycle are not particularly effective at reducing repository radiotoxicity as the final core load dominates over a very long timeframe. In this paper, the analysis is extended to the thorium (Th) fuel cycle. Closed Th-based fuel cycles are well known to have lower equilibrium radiotoxicity than U-based fuel cycles but the time taken to reach equilibrium is generally very long. Th burner fuel cycles with SFRs are found to result in very similar radiotoxicity to U burner fuel cycles with SFRs for one less generation of reactors, provided that protactinium (Pa) is recycled. Th-fuelled reduced-moderation boiling water reactors (RBWRs) are also considered, but for burner fuel cycles their performance is substantially worse, with the waste taking ∼3–5 times longer to decay to the reference level than for Th-fuelled SFRs with the same number of generations. Th break-even fuel cycles require ∼3 generations of operation before their waste radiotoxicity benefits result in decay to the reference level in ∼1000 years. While this is a very long timeframe, it is roughly half that required for waste from the Th or U burner fuel cycle to decay to the reference level, and less than a tenth that required for the U break-even fuel cycle. The improved performance over burner fuel cycles is due to a more substantial contribution of energy generated by 233U leading to lower radiotoxicity per unit energy generation. To some extent this an argument based on how the radiotoxicity is normalised: operating a break-even fuel cycle rather than phasing out nuclear power using a burner fuel cycle results in higher repository radiotoxicity in absolute terms. The advantage of Th break-even fuel cycles is also contingent on recycling Pa, and reprocessing losses are significant also for a small number of generations due to the need to effectively burn down the TRU. The integrated decay heat over the scenario timeframe is almost twice as high for a break-even Th fuel cycle than a break-even U fuel cycle when using SFRs, as a result of much higher 90Sr production, which subsequently decays into 90Y. The peak decay heat is comparable. As decay heat at vitrification and repository decay heat affect repository sizing, this may weaken the argument for the Th cycle.  相似文献   

3.
The thorium fuel recycle scenarios through a Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO2UO2 and heterogeneous ThO2UO2–DUPIC fuels. The recycling was performed with dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, a thorium fuelled CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products for the multiple recycling fuel cycle were estimated and compared to those of a once-through fuel cycle.  相似文献   

4.
This study evaluates nuclear fuel cycle scenarios which are based on recycling spent nuclear fuel for the sustainability of nuclear energy. Three fuel cycle scenarios, the Light Water Reactor (LWR)–Advanced Recycling Reactor (ARR) recycle, the LWR–High Temperature Gas Reactor (HTGR)–ARR recycle, and the HTGR partial recycling fuel cycle, are assessed for their mass flow and electricity generation costs and the results are compared to those of the LWR once-through fuel cycle. The spent fuels are recycled in both the Consolidated Fuel Treatment Center and the Actinide Management Island, which are capable of reprocessing spent fuels by Uranium Extraction and Pyrochemical processes, respectively. The mass flow calculations show that the Transuranics (TRU) which have a long-term radiation effect can be completely burned in the recycling fuel cycles, resulting in 350, 450 and 6 times reduction of TRU inventory for the LWR–ARR, LWR–HTGR–ARR and HTGR partial recycling fuel cycles, respectively, when compared to the once-through fuel cycle. The electricity generation costs of these fuel cycle scenarios were estimated to be 39.1, 34.9 and 25.7 USD/MW h(e), which are comparable to or smaller than that of the once-through fuel cycle. Although the candidate fuel cycles adopt reprocessing options which raise fuel cycle cost, increase in uranium cost and the advanced design of the HTGR can further reduce the advanced fuel cycle costs of the HTGR.  相似文献   

5.
The paper shows the impact of recycling LWR-MOX fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radio activities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burn up increases. Multiple recycling of Pu + MA in fast reactors is a feasible option which has to be studied very carefully: the Pu (except the isotopes Pu-238 and Pu-240), Am and Np levels decrease as a function of the recycle number, while the Cm-244 level accumulates and gradually transforms into Cm-245. Long cooling times (10 + 2 years) are necessary with aqueous processing.The paper discusses the problems associated with multiple reprocessing of highly active fuel types and particularly the impact of Pu-238, Am-241 and Cm-244 on the fuel cycle operations. The calculations were performed with the zero-dimensional ORIGEN-2 code. The validity of the results depends on that of the code and its cross section library. The time span to reduce the initial inventory of Pu + MA by a factor of 10, amounts to 255 years when average burn ups are limited to 150 GWd t−1.  相似文献   

6.
Reducing the inventory of long lived isotopes that are contained in spent nuclear fuel is essential for maximizing repository capacity and extending the lifetime of related storage. Because of their non-fertile matrices, inert matrix fuels (IMF’s) could be an ideal vehicle for using light-water reactors to help decrease the inventory of plutonium and other transuranics (neptunium, americium, curium) that are contained within spent uranium oxide fuel (UOX). Quantifying the characteristics of spent IMF is therefore of fundamental importance to determining its effect on repository design and capacity. We consider six ZrO2 based IMF formulations with different transuranic loadings in a 1-8 IMF to UOX pin-cell arrangement. Burnup calculations are performed using a collision probability model where transport of neutrons through space is modeled using fuel to moderator transport and escape probabilities. The lethargy dependent neutron flux is treated with a high resolution multigroup thermalization method. The results of the reactor physics model are compared to a benchmark case performed with Montebruns and indicate that the approach yields reliable results applicable to high-level analyses of spent fuel isotopics. The data generated show that a fourfold reduction in the radiological and integrated thermal output is achievable in single recycle using IMF, as compared to direct disposal of an energy equivalent spent UOX.  相似文献   

7.
The radiotoxicity hazard of U-free Rock-like oxide: ROX (PuO2+ZrO2) and Thorium oxide: TOX (PuO2+ThO2) LWR spent fuels is investigated and radiotoxicity hazard of MOX spent fuel is considered as a reference case. The long-term ingestion radiotoxicity hazard of ROX spent fuel is one third and nearly one fourth of that of TOX and MOX spent fuels, respectively. This is because the discharged Pu and long lived Np in ROX fuel is less than that of TOX and MOX fuels. In TOX fuel, discharged Pu and MA are lower than that of MOX fuel but the long-term radiotoxicity hazard of spent fuel is nearly the same as MOX spent fuel. At the cooling 105 years, the radiotoxicity hazard of TOX spent fuel is approximately ten and three times higher than that of ROX and MOX spent fuels, respectively due to higher toxic contribution of 229Th in TOX spent fuel.  相似文献   

8.
Uranium (U) recovered from spent LWR fuels by reprocessing, which contains small amounts of U-236, is to be enriched before being re-irradiated as the recycle U. During the enrichment of recovered U in U-235, the mass fraction of U-236 also increases. Since the existence of U-236 in the recycle U has a negative effect on neutron economy, a greater enrichment of U-235 in the recycle U is required for reaching the same burnup as can be reached by the fresh U fuel. Two burnup values play the most important role in determining the enrichment of recycle U: (1) discharge burnup of spent fuel from which the recycle U is obtained and (2) desired discharge burnup of the recycle U fuel. A step-by-step procedure for calculating the enrichment of the recycle U as a function of these two burnup values is introduced. The computer codes MONTEBURNS and ORIGEN-S are made use of and a three-component (U-235, U-236, U-238) enrichment scheme is applied for calculating the amount of U-236 in producing the recycle U from the recovered U. As was aimed, the resulting expression is simple enough for quick/hand calculations of the enrichment of the recycle U for any given discharge burnup of spent fuel and for any desired discharge burnup of the recycle U fuel, most accurately within the range of 33,000–50,000 MWd/tonU.  相似文献   

9.
The advanced fast reactors of the fourth generation should be capable to breed their own fuel from poorly fissile 238U and to recycle the actinides from their own spent fuel. However, this recycling or actually the closure of fuel cycle has negative impact on the safety parameters. The goal of this work is to develop a numerical tool, which can simulate and confirm the capability of these reactors to operate with closed fuel cycle, and which can evaluate their safety parameters. The tool is named equilibrium fuel cycle procedure for fast reactors (EQL3D) and is based on the ERANOS 2.1 code platform.  相似文献   

10.
A fuel cycle system coupled with nitride fuel fast reactors and a pyrochemical reprocessing has been investigated in order to establish an actinide transmutation recycle system with long-lived radioactive nuclides. Core performance of the nitride fuel fast reactor can provide design flexibility of excellent safety characteristics and a new concept of core composed with Na- and He- bonded fuel assemblies is proposed. The effect of 15N enrichment on nuclear characteristics and the evaluation of toxicity of 14C generated from 14N are appeared, and futhermore, excellent performance for the minor actinide (MA) transmutation is shown.

The study of the pyrochemical process shows that the actinides are reasonably separated from fission products in the nitride spent fuels, and that the high level wastes are of nearly actinide-free form.  相似文献   


11.
利用ORIGENS程序对压水堆钍基乏燃料的特性进行分析,揭示了钍基乏燃料在放射性毒性、衰变热、γ射线等方面的特性,相关结果可为钍基乏燃料的贮存、后处理和地质处置提供必要的参考。研究的乏燃料是压水堆内钍-铀增殖循环堆芯设计方案中的4种,包括UOX(铀氧化物)、MOX(钚铀混合氧化物)、PuThOX(钚钍混合氧化物)和U3ThOX(工业级233U-钍混合氧化物)。研究结果表明:1)由于超铀核素的含量极低,在卸料后1 000年内,U3ThOX的放射性毒性显著低于超铀核素含量高的乏燃料;2)由于232U衰变链中208Tl的贡献,钍基乏燃料中2.6 MeV能量附近的γ射线强度明显高于铀基乏燃料,而这一能量附近的γ射线强度在卸料后约10年达到局部峰值,所以,钍基乏燃料的后处理最好避开此时间。  相似文献   

12.
An extrusion process based on sol-gel derived paste has been developed for the production of thoria recycle fuel as an alternative to the conventional powder-compaction/sintered-pellet route. Crack-free, high-density (9.7 Mg/m3) extruded slugs have been fabricated from sol-gel pastes prepared from ThO2 powder (denitrated at 600°C) having a moisture content of ~ 16%, and mixed with phenolic resin. The extruded slugs were finally sintered at 1600°C. The effects of thorium-nitrate denitration temperature and organic binder addition on the quality of the fuel slugs are discussed in the paper.  相似文献   

13.
Benefit of implementing Partitioning and Transmutation (P&T) technology was parametrically surveyed in terms of high-level radioactive waste (HLW) disposal by discussing possible reduction of the geological repository area. First, the amount and characteristics of HLWs caused from UO2 and MOX spent fuels of light-water reactors (LWR) were evaluated for various reprocessing schemes and cooling periods. The emplacement area in the repository site required for the disposal of these HLWs was then estimated with considering the temperature constrain in the repository. The results showed that, by recycling minor actinides (MA), the emplacement area could be reduced by 17–29% in the case of UO2-LWR and by 63–85% in the case of MOX-LWR in comparison with the conventional PUREX reprocessing. This significant impact in MOX fuel was caused by the recycle of 241Am which was a long-term heat source. Further 70–80% reduction of the emplacement area in comparison with the MA-recovery case could be expected by partitioning the fission products (FP) into several groups for both fuel types. To achieve this benefit of P&T, however, it is necessary to confirm the engineering feasibility of these unconventional disposal concepts.  相似文献   

14.
针对聚变裂变混合乏燃料焚烧堆FDS-SFB(Spent Fuel Burner),基于湿法和干法两种后处理技术途径提出了不同的燃料循环方案。并分别对FDS-SFB燃料循环所需的初装资源量、燃料制备和乏燃料后处理能力进行初步质量流分析和可行性初步评估。基于较好嬗变和增殖性能的FDS-SFB典型中子学方案的质量流初步分析表明:两种方案燃料循环其所需的初装资源量、燃料制备、乏燃料后处理能力具有初步的可行性。  相似文献   

15.
The classic approach to the recycling of Pu in PWR is to use mixed U-oxide Pu-oxide (MOX) fuel. The mono-recycling of plutonium in PWR transmutes less than 30% of the loaded plutonium, providing only a limited reduction in the long-term radiotoxicity and in the inventory of TRU to be stored in the repository. The primary objective of this study is to assess the feasibility of plutonium recycling in PWR in the form of plutonium hydride, PuH2, mixed with uranium and zirconium hydride, ZrH1.6, referred to as PUZH, that is loaded uniformly in each fuel rod. The assessment is performed by comparing the performance of the PUZH fueled core to that of the MOX fueled core. Performance characteristics examined are transmutation effectiveness, proliferation resistance of the discharged fuel and fuel cycle economics. The PUZH loaded core is found superior to the MOX fueled core in terms of the transmutation effectiveness and proliferation resistance. For the reference cycle duration and reference fuel rod diameter and pitch, the percentage of the plutonium loaded that is transmuted in one recycle is 53% for PUZH versus 29% for MOX fuel. That is, the net amount of plutonium transmuted in the first recycle is 55% higher in cores using PUZH than in cores using MOX fuel. Relative to the discharged MOX, the discharged PUZH fuel has smaller fissile plutonium fraction - 45% versus 60%, 15% smaller minor actinides (MA) inventory and more than double spontaneous fission neutron source intensity and decay heat per gram of discharged TRU. Relative to the MOX fuel assembly, the radioactivity of the PUZH fuel assembly is 26% smaller and the decay heat and the neutron yield are only 3% larger. The net effect is that the handling of the discharged PUZH fuel assembly will be comparable in difficulty to that of the discharged MOX assembly while the proliferation resistance of the TRU of the discharged PUZH fuel is enhanced.  相似文献   

16.
The Sodium-Cooled Heterogeneous Innovative Burner Reactor (SCHIBR) model created at the University of South Carolina uses heterogeneous minor actinide targets. To improve minor actinide transmutation, a hybrid fuel management scheme is utilized involving initially moderated assemblies on the core periphery followed by a second period of irradiation in a fast flux with the moderating rods removed. A multi-tiered recycling strategy was developed to increase plutonium utilization in the SCHIBR model through the recycle of the driver fuel. An equilibrium fuel cycle was evaluated with the computer code ERANOS to determine the improvements in fuel utilization, reduction in high level waste, and safety of the SCHIBR design. Fuel depletion studies were conducted to determine the composition of input and output streams in order to develop reactor recipes for use in the fuel cycle simulation code, VISION. The once-through SCHIBR model reduces the radiotoxicity of high level waste by 66% of the once-through LWR model after 300 years in storage. The multi-tiered recycling strategy offers improvements over the previous once-through SCHIBR model by reducing the radiotoxicity by 86% after 300 years in storage.  相似文献   

17.
The paper presents recycling as an option of used nuclear fuel management strategy with specific focus on the Slovenia. GEN energija is an independent supplier of integral and competitive electricity for Slovenia. In response to growing energy needs, GEN has conducted several feasibility and installation studies of a new nuclear power plant in Slovenia. With sustainable development, the environment, and public acceptance in mind, GEN conducted a study with AREVA concerning the options for the management of its’ new plant's used nuclear fuel.After a brief reminder of global political and economic context, solutions for used nuclear fuel management using current technologies are presented in the study as well as an economic assessment of a closed nuclear fuel cycle. The paper evaluates and proposes practical solutions for mid-term issues on used nuclear fuel management strategies. Different scenarios for used nuclear fuel management are presented, where used nuclear fuel recycling (as MOX, for mixed oxide fuel, and ERU, for enriched reprocessed uranium) are considered. The study concludes that closing the nuclear fuel cycle will allow Slovenia to have a supplementary fuel supply for its new reactor via recycling, while reducing the radiotoxicity, thermal output, and volume of its wastes for final disposal, reducing uncertainties, gaining public acceptance, and allowing time for capitalization on investments for final disposal.  相似文献   

18.
A basic concept on partitioning and transmutation treatment by neutron reaction was developed in order to Improve the waste management and the disposal scenario of high level waste (HLW). The grouping in partitioning was important factor and closely linked with the characteristics of BIT (burning and/or transmutation) treatment. The selecting and grouping concept in partitioning of HLW was proposed herein, such as Group MA1 (Np, Am, and unrecovered U and Pu), Group MA2 (Cm, Cf etc.), Group A (Tc and I), Group B (Cs and Sr) and Group R (the partitioned remain of HLW), judging from the three criteria for B/T treatment proposed in this study, which is related to (1) the value of hazard index for long-term tendency based on ALI, (2) the relative dose factor related to the mobility or retardation in ground water penetrated through geologic layer, and (3) burning and/or transmutation characteristics for recycle B/T treatment and the decay acceleration ratio by neutron reaction. Group MA1 and Group A could be burned effectively by thermal B/T reactor. Group MA2 could be burned effectively by fast B/T reactor. Transmutation of Group B by neutron reaction is difficult, therefore the development of radiation application of Group B (Cs and Sr) in industrial scale may be an interesting option in the future. Group R, i.e. the partitioned remains of HLW, and also a part of Group B should be immobilized and solidified by the glass matrix. HIALI, the hazard index based on ALI, due to radiotoxicity of Group R can be lower than HIALI due to standard mill tailing (smt) or uranium ore after about 300 years.  相似文献   

19.
It is shown that there is promise in using the uranium product obtained by reprocessing spent nuclear fuel from RBMK reactors as a non-initial fuel source for thermal reactors. A technical path for spent nuclear fuel from RBMK reactors is proposed: radiochemical reprocessing and obtaining oxides of recycled uranium. Oxides of the category RBMK-poor are packed and then stored in a near-surface storage facility; oxides of the category RBMK-rich are fluoridated, and UF6 is fed into separation production for additional enrichment to the required content of 235U. Additional advantages of recycled RBMK uranium as a source of non-initial 235U are the low content of 232U and the relatively low activity of spent fuel, which simplifies its reprocessing.  相似文献   

20.
This study quantifies the credits of beryllium and uranium which are used as the raw materials for BeO-UO2 nuclear fuel by analyzing the influence of their credits on the nuclear fuel cycle cost was analyzed, where the credit was defined as the value of raw materials recovered from spent fuel and the raw materials that were re-cycled. The credits of beryllium and uranium at 60 MWD/kg burn-up were –0.22 Mills/kWh and –0.14 Mills/kWh, respectively. These findings were based on the assumption that the optimal mixing proportion of beryllium in the BeO-UO2 nuclear fuel is 4.8 wt%. In sum, the present study verified that the credits of beryllium and uranium in relation to BeO-UO2 nuclear fuel are significant cost drivers in the cost of the nuclear fuel cycle and in estimating the nuclear fuel cycle of the reprocessing option for spent nuclear fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号