首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of extrusion on improving the critical current density ( J c) of Bi1.4Pb0.6Sr2Ca2Cu3O x superconducting wires is investigated. Calcined powders (Bi1.4Pb0.6Sr2Ca2Cu3O x ) are first mixed with a forming aid—a thermoplastic polymer (polyethylene)—for workability, and then extruded, using a capillary rheometer, to form wires 2 mm in diameter. The J c value, measured by the four-probe method in liquid nitrogen at 77 K, is improved substantially by the following process: (1) the superconducting precursors are extruded at high viscosity with a forming aid, to align the platelike particles unidirectionally; (2) the forming aid alone is carefully burned out, without destroying the extruded configuration; and (3) the extruded wires are annealed at 850°C in air for more than 96 h.  相似文献   

2.
The Ba-doped superconducting (Bi,Pb)2Sr2- x Ba x Ca2Cu3O y and (Bi,Pb)2Sr2Ca2- x Ba x Cu3O y (0 ≦ x ≦ 1.0) were prepared by using a melt-quenching method, and the effect of Ba additions on the glass-forming ability and the crystalline phase was examined. The glass-forming ability was not improved by substitution of Ba for Sr or Ca, and particularly BaPbO3 as well as CaO was observed in the melt-quenched sample of (Bi,Pb)2SrBaCa2Cu3O y . BaPbO3 crystals were precipitated in all glass-ceramics with Ba substituted for Sr or Ca. The partial substitution of Ba substituted for Sr was effective for the formation of the high- T c phase, and (Bi,Pb)2Sr1.4Ba0.6Ca2Cu3O y glass-ceramics obtained by annealing at 830°C for 100 h exhibited superconductivity with a T c of 103 K, although BaPbO3 and the low- T c phase were still largely present.  相似文献   

3.
Bi2Sr2Ca2Cu2O8±δ-type compound thick films were exposed to oxygen-argon-gas mixtures (1% to 20% oxygen gas) at elevated pressures (up to 207 MPa) and temperatures (500° to 940°C) for times ranging from 5 to 96 h. At a sufficiently high oxygen fugacity and temperature, Bi2Sr2Ca1Cu2O8±δ decomposed via a solid-state reaction. Room-temperature X-ray diffractometry and electron probe microanalysis of decomposed films revealed the presence of Bi2(Sr,Ca)2-Cu1O6±θ ro-type compound, Bi2Sr2,Ca1O8±δ-type compound, and CuO. Bi2Sr2Ca1Cu2O8±δ decomposition was accompanied by a modest weight gain, which was consistent with an oxidation reaction. The solid-state decomposition reaction could be reversed by heat treatment of decomposed films at 860°C in pure, flowing oxygen at ambient pressure.  相似文献   

4.
Al2O3 addition to the melt of a BiSrCaCu2O x composition was found by TEM observation to cause the liquid-liquid phase separation of the melt-quenched glass, and to result in preferential precipitation of superconducting Bi2Sr2Ca1Cu2O x crystals from the melt during the cooling process.  相似文献   

5.
The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)2Sr2Ca2Cu3O10+δ/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+δ to (Bi,Pb)2Sr2Ca2Cu3O10+δ transformation. Ca and/or Pb-rich (Bi,Pb)2Sr2CaCu2O8+δ grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)2Sr2Ca2Cu3O10+δ formation. Apparently, a Ca/Sr ratio of around 1 is sufficient to keep (Bi,Pb)2Sr2Ca2Cu3O10+δ nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.  相似文献   

6.
Phase equilibria of the quasi-quinary system Bi3O3-PbO-SrO-CaO-CuO were studied between 650° and 900°C in air with emphasis on the high-temperature superconducting phase (Bi,Pb)2+ x Sr2Ca2Cu3O10+ d (2223). The 2223 phase lies in equilibrium with a number of nonsuperconducting phases and also with the superconducting phase (Bi,Pb)2Sr2CaCu2O8+ d (2212). The single-phase region was found to be very limited. The Pb solubility of the 2223 phase is strongly temperature dependent. The phase relations are very sensitive to variations of the cation concentration and temperature. This effect significantly influences the preparation of 2223 ceramics.  相似文献   

7.
The stability of the (Bi,Pb)2Sr2Ca2Cu3O10±δ-type compound has been evaluated under conditions of elevated temperature (500°-860°C) and elevated oxygen fugacity (i.e., in O2/Ar gas mixtures containing ≤120% O2, at total pressures of 5207 MPa). At sufficiently high oxygen fugacities and temperatures, the (Bi,Pb)2Sr2Ca2Cu3O10±δ-type compound transformed into a mixture of a strontium-rich (Bi,Pb)1-(Sr,Ca,Cu)2Oy-type compound, a calcium-rich (Bi,Pb)2-(Sr,Ca,Cu)2Oy-type compound, CuO, and a small amount of (Sr,Ca)O. The decomposition of the (Bi,Pb)2Sr2Ca2-Cu3O10±δ-type compound was accompanied by a 2%-3% weight gain, which was consistent with an oxidation reaction. The conditions of oxygen fugacity and temperature leading to decomposition, and the resulting decomposition products, are compared for the (Bi,Pb)2Sr2Ca2Cu2O10±δ-type and Bi2Sr2Ca1Cu2O8±Ψ-type compounds.  相似文献   

8.
Retrograde densification of pelletized calcines and glasses having an approximate (Bi,Pb)2Sr2Ca2Cu3O10 starting stoichiometry and sintered at ∼850°C can be described by first-order rate equations. Retrograde densification in the calcine precursors was largely due to the development of open pores, and was approximately proportional to the concentration of the (Bi,Pb)2Sr2CaCu3O10 phase. In the glasses, retrograde densification is mainly caused by porosity accompanying the growth of a needlelike Sr─Ca─Cu─O phase, together with (Bi,Pb)2Sr2Ca2Cu3O10 and (Bi,Pb)2Sr2CaCu2O8.  相似文献   

9.
We report the enhancement of the zero resistivity T c(0) by 5.5 K i.e. from 104 to 109.5 K by substitution of gallium 1.34% of copper in the bismuth 2223 compound. A series of Ga-containing compounds Bi2Pb0.4Sr2Ca2Cu3− x Ga x O y ( x =0.00, 0.02, 0.04, 0.06, and 0.08) are synthesized by the solid-state reaction method. The samples are characterized by measurements of their dc electrical resistivity and ac magnetic susceptibility and by the powder X-ray diffraction analysis. It is noted that the high- T c (2223) phase increases from 57.55% in an undoped sample to 92.99% in samples containing a low concentration of gallium i.e. x ≤0.04.  相似文献   

10.
A slurry containing YBa2Cu3O7− x particles and a fine YBa2Cu3(OH) x colloid solution was prepared, and a large-scale bulk YBa2Cu3O7− x superconductor (about 50 mm × 35 mm × 2 mm) was produced by plastic forming without high-pressure molding. The samples molded from the slurry were dried and then fired at 1223 K in air. X-ray diffraction data indicated that the samples had the characteristic orthorhombic YBa2Cu3O7− x structure. Measurements of electrical resistance were carried out between 300 and 50 K by the standard four-probe DC electrical measurement. The samples began superconducting at an onset temperature around 92 K, and the full-transition temperature (critical temperature) ( T c) was 88.7±1.4 K. The critical current density ( J c) measured at 77 K was about 440 A/cm2, the value of J c was improved by the heat treatment under an oxygen atmosphere, and J c=1.6 × 103 A/cm2 was observed. Under the magnetic field (B=1 T), the sample held its superconductivity, and demonstrated that this method can be used to produce the magnetic shielding used in magnetic resonance imaging diagnosis.  相似文献   

11.
The cation solubility limits of the n = 2 and n = 3 superconducting phases in the Bi2(Sr x Ca1 − x ) n +1Cu n O y system were established along tie lines with compatible phases via electron probe microanalysis on bi- (or poly-) phasic samples prepared at 860°C. Pb additions (15 mol% of the Bi content) were used to facilitate formation of the n = 3 phase. In each case football-shaped volumes in composition space were established as the solubility limits which bordered on the nominal compositions 2212 or 2223 (Bi:Sr:Ca:Cu) with the long axis parallel to the Sr-Ca side of the quaternary (i.e., Sr-to-Ca intersolubility) but also extending toward Bi and Cu. This means that, for the most part, the superconducting phases are alkaline-earth deficient relative to the ideal 2212 and 2223 compositions. The Pb content in the 2223 phase is typically 10% of the Bi content. T c variations could be correlated with variations in Sr or (Sr + Bi) content and the length of the c -axis parameter.  相似文献   

12.
Phase equilibria of the La2O3–SrO–CuO system have been determined at 950°C at 30 kbar (3 GPa). Stable phases at the apexes of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2, CuO4 and La2Cu2O5 in the LaO1.5–CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO–SrO binary. The La2– x Sr x -CuO4–δ solid solution is stable for 0.00 is ≤ x ≤ 1.29, the La2– x Sr1+ x Cu2O6+δ solid solution is stable for 0.03 ≤ x ≤0.20, the La2– x Sr x Cu2O5–δ solid solution is stable for 0.00 ≤ x ≤1.08, and the La x Sr14– x Cu24O41 solid solution is stable for 0.00 ≤ x ≤ 6.15. The 30 kbar phase diagram differs from the 1 atm (0.1 MPa) and 10 kbar (1 GPa) results principally in the absence of La1– x Sr2+ x Cu2O5.5+δ as a stable phase and the extended range of the La2– x Sr x Cu2O5–δ solid solution at 30 kbar.  相似文献   

13.
Lead-free piezoelectric (K0.5Na0.5)NbO3– x wt% Bi2O3 ceramics have been synthesized by an ordinary sintering technique. The addition of Bi2O3 increases the melting point of the system and improves the sintering temperature of (K0.5Na0.5)NbO3 ceramics. All samples show a pure perovskite phase with a typical orthorhombic symmetry when the Bi2O3 content <0.7 wt%. The phase transition temperature of orthorhombic–tetragonal ( T O − T ) and tetragonal–cubic ( T C) slightly decreased when a small amount of Bi2O3 was added. The remnant polarization P r increased and the coercive field E c decreased with increasing addition of Bi2O3. The piezoelectric properties of (K0.5Na0.5)NbO3 ceramics increased when a small amount of Bi2O3 was added. The optimum piezoelectric properties are d 33=140 pC/N, k p=0.46, Q m=167, and T C=410°C for (K0.5Na0.5)NbO3–0.5 wt% Bi2O3 ceramics.  相似文献   

14.
Ag-sheathed (Bi,Pb)2Sr2Ca2Cu3O, (2223) tapes were made by the oxide-powder-in-tube method. Tapes were heat-treated isothermally at several different temperatures in 7.5% O2/Ar, then quenched into oil to retain the phase assemblages at the reaction temperatures. 2223 formed between ∼810° and ∼837°C. The Avrami equation was applied to describe the kinetics of 2223 formation from a mixture of Bi2Sr2CaCu2O x and nonsuperconducting phases, mainly Ca2PbO4 and CuO. The calculated Avrami exponent, n ∼ 1, indicated that the kinetics in this system could be described as a diffusion-controlled, two-dimensional nucleation and growth process. The apparent activation energy for forming 2223 was ∼2900 kJ/mol from ∼817° to ∼825°C and ∼890 kj/mol from ∼825° to ∼837°C. A temperature-time-transformation diagram was constructed based on the kinetic data; it describes the transformational behavior of this particular system.  相似文献   

15.
The preparation of large-scale YBa2Cu3O7− x superconductor samples was investigated. This method is based on plastic forming using a slurry consisting of YBa2Cu3O7− x particles and a sol solution made up of multimetallic hydroxide particles (YBa2Cu3(OH) x colloidal particles) and poly(vinyl) alcohol (PVA). The effects of adding PVA on the product, the crystallinity, and the superconducting properties of the sample were investigated. It was found that PVA acted as a protective colloid in the sol solution and stabilized YBa2Cu3(OH) x colloidal particles, and that the role of PVA changed from a thickener to a flocculant during drying so that the formability/workability of the green sheet sample was improved and large samples (about 80 mm × 80 mm × 3 mm) without large cracks were obtained after firing. The samples became superconducting at 91.5±0.5 K ( T con) and the full transition temperature ( T coff) was 88.5±1.5 K. The critical current density ( J c) of the sample prepared from the slurry containing 1 wt% PVA was 713±150 A/cm2 at 77 K. This J c value was improved to 2300 A/cm2 by heat treatment at 773 K under an oxygen atmosphere.  相似文献   

16.
Single-crystal X-ray diffraction was used to investigate the structure of the ternary oxide of approximate formula Bi14(Sr,Ca)12O33. The crystal examined was found to have a composition Bi2Sr0.68Ca1.07O4.75 or Bi16Sr5.44Ca8.56O38 as a result of refinement. It crystallizes in the monoclinic space group (C2/m), with cell parameters a = 21.764 (4) A, b = 4.3850 (13)° A, c = 12.905 (3) A, β= 102.72 (2)°, and V 1201.2 (5) A3. Strontium and calcium ions were found to substitute for each other. The structure consists of a network of alkaline-earth oxide polyhedra with broad channels parallel to the b axis, in which the bismuth ions reside. Two out of four crystallographically distinct Bi ions form infinite Bi—O zigzag ribbons of edge-linked Bi—O units, while each of the other two form oxygen corner-shared Bi—O chains along b . The lone pair electrons of the Bi ions point toward each other in the channels.  相似文献   

17.
0.60Ba0.6Sr0.4TiO3(BST)–(0.40− x )Mg2SiO4(MS)– x Al2O3 ( x =0, 0.5, 3, 5wt%) composite ceramics exhibit excellent characteristics suitable for tunable device applications. With increasing amount of Al, the dielectric peak can be quantitatively broadened and suppressed; the "phase transition temperature" T c or ( T m) shifts to a lower temperature. Meanwhile, the tunability is still high in a wider temperature range. Far from T c, pyroelectric effects are observed by using the Byer and Roundy technology and Slim polarization hysteresis loops are observed under high ac dielectric field at 10Hz. These proved the existence of spontaneous polarization in certain possible orientations in a broad temperature range above T c in the paraelectric medium and reveal why 0.60BST–(0.40− x )MS– x Al2O3 have such remarkable dielectric nonlinearity.  相似文献   

18.
Crystal chemistry and subsolidus phase equilibrium studies of the Ba-Nd-Cu-O system near the CuO and Nd2O3 corners have been carried cut at 950°C in air. Two solid-solution series have been identified in the Ba-Nd-Cu-O system. The first series involves the high- T c superconductor phase, and has the formula Ba2–xNd1+xCu3O6+z, where × < ≅ 0.7. At the ideal compound stoichiometry of Ba2NdCu3O6+z, the transformation from the high- T c orthorhombic to tetragonal phase occurs at 550°–575°C in air. This temperature varies as a function of composition, and at x ≅ 0.2 to 0.3 it occurs at 950°C. The second solid solution is the non-superconducting "brown phase" represented by Ba2+2x-Nd4–2xCu2–xO10–2z 0 ≤ x ≤ 0.1. Preliminary phase diagrams of the BaO–Nd2O3 and Nd2O3–CuOx systems are also presented. Standard X-ray diffraction patterns of BaNd2–CuO5 and (Nd1.9Ca0.1)CuO4–z are provided.  相似文献   

19.
The intrinsic kinetics, unaffected by diffusional and masstransfer effects, of the CO2 degradation of superconducting particles have been determined using a nonisothermal technique. Below 900°C, the carbonization of YBa2Cu3O7- x leads to formation of BaCO3, Y2Cu2O5, CuO, and Cu2O. A further increase in temperature results in formation of BaCuO2 from BaCO3 and CuO. The carbonization rate shows the 1.5th-order dependence on the amount of unreacted YBa2Cu3O7- x for the temperature range of 550° to 815°C. The activation energy of carbonization was determined to be 95.1 kJ · mol−1.  相似文献   

20.
The phase relations within the system Tl2O3–BaO–CaO–CuO including Ag have been studied with emphasis on the high-temperature superconducting phases TlBa2Ca2Cu3O8.5 (1223 phase), Tl2Ba2Ca2Cu3O10 (2223 phase), TlBa2CaCu2O6.5 (1212 phase), and Tl2Ba2CaCu2O8 (2212 phase) at 890°C in an oxygen atmosphere. 1223 has been found to be in equilibrium with a liquid phase that is Tl poor. 2223 and 2212 exhibit varying Tl/(Ba + Ca) ratios. The three-phase field 1223 + 2223 + 2212 has been identified. The results of this study emphasize that multiphase samples can be prepared which consist of three superconducting phases, each exhibiting a critical temperature of 100 K or above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号