首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一株菲降解细菌的分离、鉴定及其降解特性研究   总被引:1,自引:0,他引:1  
从胜利油田附近石油污染土壤采集土样,以菲为唯一碳源的选择性培养基分离筛选到一株菲高效降解菌SLY-3,根据形态、生理生化特性及16S rDNA比对初步鉴定该菌株为芽孢杆菌属,并对其降解菲的特性进行了研究。结果表明,菌株SLY-3在菲浓度为80 mg·L-1条件下,28℃振荡培养96 h,对菲的降解率达到93.73%;在菲浓度为200 mg·L-1时,培养96 h后的菲降解率为98.36%。同时发现菲的降解程度与细菌数量的增长呈正相关关系。  相似文献   

2.
从山东潍坊玉米种植地采集的土壤样品中分离筛选出1株螺螨酯高效降解菌。使用高效液相色谱(HPLC)法测定了分离菌株对螺螨酯、吡虫啉和丁醚脲等8种农药的降解率,对该菌株进行了菌种鉴定并测定了最佳生长条件。结果显示:通过对筛选出的菌株WF14-6形态学观察及16SrDNA序列分析,初步鉴定该菌株为肠杆菌属(Enterobacter sp.)。确定了该菌株最佳的生长温度为30℃、pH为7.0。在培养120h后对螺螨酯的降解率为76.42%,对吡虫啉、三氟羧草醚、乙嘧酚磺酸酯、丁醚脲和烯酰吗啉的降解率为20.81%~41.06%。  相似文献   

3.
氯苯降解菌的筛选及降解条件   总被引:3,自引:2,他引:1  
以筛选氯苯降解菌株为目的从抚顺石油二厂污水处理曝气池中的活性污泥中筛选到一株具有降解氯苯能力的菌株, 命名为LP01, 依据该菌株的菌落特征、菌体形态以及染色反应和生理生化反应鉴定, 初步判断其属于假单孢菌属(Pseudomonas .sp)。同时分别考察培养温度、氯苯质量浓度、pH 值及摇床转速各单因素对该菌株降解氯苯性能的影响。并设计正交实验以选择菌株LP01 对氯苯降解的最佳条件。实验结果表明, LP01菌株对氯苯降解的最佳条件为:培养温度为35 ℃, 底物质量浓度为30 mg/ L, pH 值为8, 摇床转速为120 r/min 。在该条件下该菌株对氯苯的降解率可达到93.9%。  相似文献   

4.
高效降解废弃蓖麻基润滑油降解菌的分离筛选及特性研究   总被引:2,自引:0,他引:2  
从内蒙古某蓖麻榨油厂排污口采样,分离筛选出10株能降解废弃蓖麻基润滑油菌株,其中T-9菌株降解润滑油的能力较强,该菌株最适降解pH值为5.0,降解温度30℃,在1%~5%的NaCl中能较好生长.通过菌落形态与生理生化实验,初步鉴定该菌株为假单胞菌属(Pseudomonas).在润滑油质量浓度为10 g/L,初始pH值为5.0,180 r/min,30℃下培养7 d后,采用改进的CEC-L-33-A-93方法测得其对废弃蓖麻基润滑油的降解率为72%.采用GC/MS对降解产物进行分析,测得其对废弃蓖麻基润滑油降解率为80%,该菌株具有良好的蓖麻基润滑油降解能力.  相似文献   

5.
通过对5种不同土壤样品进行甲烷降解实验筛选出甲烷降解率最高的稻田土壤样品,并从土壤样品中分离、筛选出一株具有高效降解甲烷能力的甲烷氧化细菌L08.通过对菌种接种量、pH、培养温度、培养方式等条件的研究,得到菌株的最优生长条件:培养温度35 ℃,pH 7.0;菌液接种量4.0 %(体积分数),甲烷含量为10 %(体积分数),测定其生长曲线,为甲烷氧化细菌降解甲烷研究提供基础数据.  相似文献   

6.
高效石油烃降解菌的分离鉴定及降解特性   总被引:12,自引:0,他引:12  
为获得更为丰富的石油降解微生物资源,从沈抚污灌区石油污染土壤和实验室高浓度柴油胁迫土壤中筛选出了4株高效石油烃降解菌SF-422、SF-428、SF-433和SYS-1.这4株菌总石油烃(Total petroleum hydrocarbon/TPH)生物降解率为67.4%~73.6%.经过16项生理生化特性实验和16S rDNA序列分析鉴定,SF-433,SF-428,SF-422和SYS-1分别为蜡状芽孢杆菌(Bacillus cereus),木糖氧化无色杆菌(Achromobacter xylosoxidans),施氏假单胞菌(Pseudomonas stutzeri)和洋葱伯克霍尔德氏菌(Burkholderia cepacia).纯烃降解定性实验表明所筛选出的4株高效降解菌均能够利用正十六烷、苯、菲和环己烷为唯一碳源生长,其中菌株SF-428和SYS-1显示了对芳烃及环烷烃较强的利用能力.  相似文献   

7.
从浙江施用氯氰菊酯的茶园、果园采集的58份土壤样品筛选了1株能以氯氰菊酯为惟一碳源生长并具有降解氯氰菊酯能力的细菌LQK-14.通过生理生化特征和16SrRNA基因序列同源性分析,鉴定该菌株为恶臭假单胞菌(Pseudomonas putida).菌株LQK-14降解氯氰菊酯的最适温度为25~30℃,最适pH为7,外加氮源显著影响菌株的降解效能,无机氮比有机氮更利于农药降解,在适宜的培养条件下7d内将100mg/L氯氰菊酯降解了88%,其降解酶定域在胞内.  相似文献   

8.
石油降解菌株的筛选及鉴定   总被引:2,自引:0,他引:2  
从抚顺石油二厂厂区石油污染土壤中筛选出3 株具有较强石油降解能力的菌株PD51 , PD53 , PD56。通过形态学观察和生理生化指标对这3 种微生物进行鉴定, 初步确定菌株PD51 和PD53 属于微杆菌属(Microbacterium), 而菌株PD56 属于节杆菌属(Arthrobater)。菌株在28 ℃培养72 h 后, 发现这3 株菌株(PD51,PD53, PD56)对石油烃的降解率分别为76. 63 %, 76. 47 %, 76. 17 %。而这3 株菌株的混合菌株对石油烃的降解率达到了84. 31%。结果表明, 混合菌株对石油烃的降解能力要优于单一菌株对石油烃的降解能力。实验中同时发现菌株PD56 还具有利用苯酚和菲等芳烃的能力。  相似文献   

9.
从松原油田石油污染土壤中筛选、分离出一株降解石油烃的菌株,观察其菌落形态,通过16S rDNA 序列分析对其进行鉴定。结果表明:该菌株的菌落呈白色不规则状、表面粗糙、边缘不整齐。16S rDNA序列分析鉴定为类产碱假单胞菌(Pseudomonas pseudoalcaligenes strain)。在温度为35℃、pH值为8时菌株对石油烃降解效果最好,降解率为75.4%。  相似文献   

10.
在焦化废水处理站附近的泥土中,驯化和筛选出适应高浓度焦化废水的优势降解菌.通过比较菌株在含不同体积浓度焦化废水的培养基中生长情况,筛选出耐受焦化废水毒性的优势菌株,并进一步驯化.对驯化出的菌株以焦化废水COD降解率进行筛选,并分离纯化,考察培养条件对其降解率的影响.实验结果表明,泥土中筛选出的优势菌株在35℃,pH为9,接种量在1:50的情况下生长最佳;其对焦化废水COD降解率比活性污泥筛选出的菌株提高了25%以上.  相似文献   

11.
从4个样品中筛选出一能够高效降解聚乙烯醇(PVA)的混合菌系,并对其驯化培养及分离纯化,得到了7株菌株,均能够降解聚乙烯醇.通过菌落形态和生理生化实验对这些菌株进行了初步鉴定.同时考察了混合菌系与单菌株降解效果的比较.结果说明混合菌系的降解效率远远大于单菌株,48h降解率可达90%以上.  相似文献   

12.
为了降解腐霉利,在长期受农药污染的蔬菜大棚土壤中,驯化分离出13种菌株,通过正交试验确定了混合菌群降解腐霉利的最优条件:腐霉利浓度为300 mg/L,葡萄糖浓度为200 mg/L,接种量为15%.在分离出的13种菌株中,筛选出1种高效降解腐霉利的菌株T32-1.通过高效液相(HPLC)对菌株T32-1和混合菌群对腐霉利的降解情况进行了分析,结果表明当腐霉利浓度为300 mg/L时,菌株T32-1和混合菌群对腐霉利的去除率分别为77.2%和90%.  相似文献   

13.
为了获得具有降解甲醛能力的甲醛降解菌.采用平板法,从家具厂污水中筛选得到了甲醛降解能力较好的10株菌,并对其进行了复筛,得到6株降解能力较强的菌株,分别为L-1、L-2、L-3、L-4、L-5和L-6.对这些菌株进行了菌体形态、菌落特征观察,细菌生长曲线、细菌降解曲线的测定.并通过正交实验设计得到了菌株的最佳生长条件,以及真实降解实验.结果表明,这6株菌具有较强的甲醛降解效果.  相似文献   

14.
溴氰菊酯降解菌的分离与鉴定及其降解特性   总被引:1,自引:0,他引:1  
以长期施用溴氰菊酯农药的茶园土壤作为菌源,以富集驯化培养法从中分离得到一株溴氰菊酯降解菌DXQ018。通过生理生化及16S rDNA分析,将菌株DXQ018鉴定为醋酸钙不动杆菌(Acinetobacter calcoaceticus)。研究了菌株DXQ018在不同条件下对溴氰菊酯的降解特性,结果表明:培养温度、培养基初始pH和底物质量浓度对菌株DXQ018的生长及其对溴氰菊酯的降解率都有影响;当培养温度为37 ℃、培养基初始pH为7、底物质量浓度为20 mg/L时,菌株DXQ018对溴氰菊酯的最高降解率达到58.27%。    相似文献   

15.
为了获得高效石油降解菌种,以原油为唯一碳源,从油水混合物中分离筛选出菌株。研究不同的温度、转速等对菌体生长情况和石油降解率的影响。在实验条件下,2株优势菌在适宜的条件下对石油的降黏率可分别高达28.5%、51.5%。偏酸或偏碱环境均不利于菌体生长,培养温度对2株菌体生长和石油降解率影响较大,最佳温度是35℃。在高矿化度条件下,菌株对原油仍有降解作用,降黏率为40%以上。原油组分分析结果表明,菌种在以原油为碳源培养后,使原油组分中沥青质、非烃及芳烃类含量均发生变化。  相似文献   

16.
从江苏省镇江市五女峰茶园的土壤中分离得到一株咖啡因高效降解菌,能以咖啡因为唯一碳源和氮源生长,经表型特征和16SrRNA序列分析鉴定其为Burkholderia属,命名为Burkholderiasp.CF1。通过单因素试验确定菌株CF1咖啡因降解最优条件为培养温度30℃,pH 5.0,接种量5%及转速180r/min。在此条件下,利用菌株CF1降解茶渣中的咖啡因,反应时间7d、含水量75%时,降解率最高可达到98.1%。  相似文献   

17.
对苯二甲酸降解微生物的驯化及筛选   总被引:3,自引:0,他引:3  
从涤纶织物加工厂废水处理系统中取活性污泥获得菌源,分别提供不同的培养条件,经约40d驯化筛选得到约200株对苯二甲酸(TA)降解微生物.采用平板分离法分离出186株,通过对其分解能力的测定,又选出生长势态良好的28株,其中9-18B菌株对TA降解率接近100%。  相似文献   

18.
从中国石油长庆石化公司附近的油泥中分离筛选出4株石油降解菌,用于组建降解原油的混合菌体系.在等接种量培养条件下,单菌株对石油烃的降解率达到41.83%~54.87%,而混合菌降解效率高于单菌株,达到64.27%.不同微生物在降解过程中起着不同的作用.居植物柔武士菌(Raoultella planticola)具有脱烷基功能,对一些支链烃有降解效果;蜡状芽孢杆菌(Bacillus cereus)既可以氧化末端烯烃,又可以降解环烷烃;克雷伯氏菌(Klebsiella variicola)是优势菌种,不仅具有以上3种降解功能,还可以降解炔烃;粘质沙雷氏菌(Serratia marcescens)和蜡状芽孢杆菌(Bacillus cereus)均能氧化不饱和醛基.4种单菌株可能存在相互抑制作用,不宜混合培养降解环烷烃.本研究为石油烃的降解机制和筛选功能微生物等方面奠定了理论基础.  相似文献   

19.
由于乐果等有机磷农药的大量使用引起的土壤及水环境污染问题正威胁着生态安全及人类健康。微生物法降解有机磷农药因其经济有效性近年来成为研究的热点。实验采用室内培养方法,从吉化农药厂废水污泥中分离筛选出一株能在高浓度农药乐果中生长的细菌菌株。结果表明,该菌株最适生长pH值为7.0左右,具有相对稳定的pH值生长范围(pH6.0~8.0),最适生长温度为30℃,3天后生长进入稳定期;得到的菌株对高浓度的乐果具有一定耐受性,在pH7.0、30℃温度条件下,1天内就可对乐果具有好的降解效果。  相似文献   

20.
从实验室模拟煤化废水处理装置的好氧段取污泥,先利用含苯酚的富集培养基筛选出对苯酚具有良好耐受性能的菌株(记为JX,JY,JZ);再利用以苯酚为唯一碳源的无机盐培养基,从以上三种菌株中筛选出一株对苯酚具有良好降解性能的菌株(JY)。对JX,JY,JZ的培养特征以及生理生化特征进行观察与鉴定。将菌株JY进行了16S r DNA基因序列的测定,最终确定该菌株为不动杆菌属(Acinetobacter)。并研究了菌投加量、温度、p H、以及摇床转速对JY的生长量以及酚降解率的影响。结果表明:菌株JY的最佳菌投加量为3%,最适温度为30℃~35℃,最佳p H为7.0,最佳摇床转速为120 r/min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号