首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前,研究金属材料在十二硫醇中腐蚀行为的报道较少。将Q235碳钢挂片于不同浓度和温度的十二硫醇中进行腐蚀,并计算腐蚀速率;采用扫描电镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)对Q235碳钢表面腐蚀形貌和成分进行了观察和分析,并研究了腐蚀机制。结果表明:Q235碳钢在十二硫醇中的腐蚀速率和腐蚀机制与十二硫醇在Q235碳钢表面的吸附和覆盖状况密切相关,当十二硫醇的浓度从低到高变化时,其在Q235碳钢表面的吸附量和覆盖度也表现出从低到高的特征,Q235碳钢从局部腐蚀转变为均匀腐蚀;Q235碳钢在十二硫醇中的腐蚀速率随着温度的升高而逐渐增大,且两者之间基本满足线性关系;Q235碳钢表面腐蚀产物呈多裂纹的疏松结构,主要物相成分为Fe_2O_3、Fe_3O_4、FeS和FeS_2。  相似文献   

2.
为了评价含硫污水的腐蚀性,采用失重法、腐蚀形貌分析、XRD物相结构分析等手段,研究了Q235钢在60℃石化含硫污水介质中不同暴露方式(大气区、全浸区)及不同浸泡时间的腐蚀行为;采用电化学测试技术研究了含硫污水介质中温度对Q235钢电化学腐蚀行为的影响。结果表明:Q235钢在污水介质中腐蚀严重,在大气区的腐蚀性比全浸区的大,大气区最大腐蚀速率达258.0μm/a,全浸区最大腐蚀速率为94.6μm/a,并且随着时间的延长,Q235钢在大气区和全浸区的腐蚀速率均有所降低,表明Q235钢表面的腐蚀产物膜对其腐蚀起到了一定的抑制作用;Q235钢在全浸区的腐蚀产物主要是FeS,在大气区的腐蚀产物主要是FeOOH、FeS、Fe_2O_3和Fe_3O_4;随着含硫污水介质温度的升高,腐蚀电流密度明显增加,低频阻抗值明显降低,污水介质的腐蚀性增强,加快了Q235钢的腐蚀。  相似文献   

3.
大气腐蚀是船用碳钢最常见的腐蚀形式之一,在造成巨大经济损失的同时严重威胁舰船安全。因此,对船用碳钢大气腐蚀行为的研究具有重要意义。为明确船用碳钢在远洋(Cl-)、酸性(SO2)和沿海(Cl-、SO2)大气环境下的腐蚀行为,本文基于Q235钢梳理了船用碳钢的大气腐蚀机理,在此基础上,分析了碳钢在三种大气环境下的腐蚀特点、锈层形貌和腐蚀产物;同时,系统性归纳总结了大气腐蚀的试验方法和分析方法;最后,对涂层防护机理和失效问题进行了综述,为舰船在典型地区大气腐蚀行为的预测和防腐设计提供理论依据。  相似文献   

4.
为了更好地解决炼厂在流动条件下减二线馏分油对管路的腐蚀问题,研究了流动条件下Q235碳钢和Cr5Mo合金钢的耐环烷酸和硫冲刷腐蚀性能,并与炼厂常用钢材渗铝碳钢和304不锈钢进行比较。结果表明:Cr5Mo钢的腐蚀速率明显小于Q235钢的,酸值越大两者的腐蚀差别越明显(酸值>5 mg KOH/g);随着酸值和硫含量的增大,Q235钢腐蚀速率有明显增大的趋势; Cr5Mo钢的腐蚀速率随着酸值的增大基本保持不变,甚至有一定的下降;相比于Q235(腐蚀速率6.3 mm/a)和Cr5Mo钢(腐蚀速率1.5 mm/a),渗铝碳钢和304不锈钢表现出优异的耐冲刷腐蚀性能,渗铝碳钢腐蚀速率为0.2 mm/a,而304不锈钢几乎没有失重。  相似文献   

5.
徐立  周学杰  郑鹏华  吴建平  吴军 《材料保护》2022,55(2):74-80+98
为了评价武汉土壤对Q235钢的腐蚀性,通过对湖北武汉地区典型土壤进行取样,成分分析,采用实际土壤埋片试验和控制温度、湿度的加速腐蚀试验,应用超景深显微镜、聚焦离子束扫面电镜(FIB-SEM),电化学工作站等设备研究了Q235钢在武汉土壤中的腐蚀行为。试验结果表明:武汉土壤环境为“轻”腐蚀等级,Q235钢发生了由非均匀腐蚀向全面腐蚀的转变,表面出现了点蚀和剥落,且其程度随时间的延长而增大,其腐蚀速率随时间的延长而降低并趋于稳定。随着腐蚀的进行,Q235钢的自腐蚀电位上升,自腐蚀电流密度降低。综上,Q235钢在武汉土壤环境中抗腐蚀性能尚可,适合作为结构材料大量使用。  相似文献   

6.
海洋工业大气环境是我国一种典型大气环境,目前缺乏Q235钢和耐候钢在其中腐蚀情况的对比研究。通过模拟加速腐蚀试验,利用腐蚀失重分析、X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)和电化学测试,对比研究Q235钢和耐候钢在模拟海洋工业大气中的腐蚀失重、组织结构和电化学行为。结果表明:Q235钢表面的锈层没有明显的保护作用,耐候钢的耐蚀性优于Q235钢,适用于海洋工业大气环境。  相似文献   

7.
土壤的干湿变化直接影响到土壤中金属材料的腐蚀.为此,应用失重法研究了土壤湿度对Q235钢在苏里格大气田土壤中腐蚀行为的影响,结合电镜、能谱等手段对腐蚀产物进行表征,并对腐蚀机理进行了初步探讨.结果表明:土壤湿度对Q235钢的腐蚀影响很严重,在湿度为10%时,出现最大腐蚀速率.腐蚀形貌观察发现Q235钢点腐蚀倾向较为严重;钢的腐蚀产物主要是铁的氧化物(Fe2O3,Fe3O4).  相似文献   

8.
采用静态挂片试验,对Q235钢在模拟储罐气相空间中的腐蚀行为进行了研究。结果表明,随腐蚀时间延长,Q235钢的腐蚀速率呈下降趋势。腐蚀产物硫化铁具有疏松、多孔、层状、开裂的结构。随着腐蚀反应的进行以及气氛成分的变化,在硫化铁膜层中出现了铁锈。Q235钢在不同pH值H2S溶液中的极化曲线结果表明,随着溶液pH值的减小,自腐蚀电位正移,腐蚀速率增大。H2S气体以及溶解氧是含硫油品储罐气相空间主要的腐蚀源。  相似文献   

9.
为探究抗压容器钢在模拟工业码头大气环境下的腐蚀行为,利用失重分析、EDS、XRD和电化学方法研究了不同模拟加速试验周期下抗压容器钢Q235和16MnNiVR钢的腐蚀行为。结果表明:抗压容器钢Q235和16MnNiVR钢在模拟工业海洋大气环境试验中,其腐蚀速率先呈现上升趋势,随着锈层由疏松逐渐变致密,腐蚀速率会发生不同程度地下降。在此加速试验下2种钢的腐蚀产物化学性质一致,所发生的腐蚀行为差异是由金属基材表面腐蚀产物致密性所致,在东南沿海工业海洋大气环境腐蚀因子作用下,16MnNiVR钢的耐蚀性可达到Q235钢的1.6倍。  相似文献   

10.
利用土壤腐蚀模拟加速实验箱,进行了Q235碳钢在滨海盐土中的恒温恒含水量、温度交变和含水量交变三种土壤腐蚀模拟加速实验。结果表明:10%(质量分数,下同)含水时,碳钢表面由局部腐蚀逐渐发展为不均匀的全面腐蚀,其余含水条件下,其主要表现为均匀腐蚀。Q235碳钢在70℃的腐蚀速率明显高于50℃,同一温度下,Q235碳钢在10%含水土壤中的腐蚀失重最大。在恒温恒含水量加速实验中,随时间增加其腐蚀电位逐渐升高,在含水量交变和温度交变实验中,腐蚀电位和氧化-还原电位随土壤含水量减小、温度降低而逐渐升高。  相似文献   

11.
黄涛  陈小平  王向东  苏航  李健  郭玉忠 《材料保护》2014,(10):58-60,8,9
为了获得高效可靠的实验室土壤加速腐蚀方法,以硅藻土为腐蚀介质,加入各种无机盐离子,用H2SO4调整溶液pH值,模拟酸性土壤,对Q235钢和907A低合金钢进行实验室加速腐蚀试验。用失重法计算腐蚀速率并统计锈层覆盖率,采用扫描电镜及X射线衍射分析腐蚀产物的结构和成分。对Q235钢在实际土壤和模拟酸性土壤中的腐蚀情况进行了对比,并比较了Q235钢和907A低合金钢的耐土壤腐蚀性。结果表明:Q235钢在2种土壤环境中腐蚀过程类似,锈层形貌类似,同时锈层产物物相一致,成分主要为α-FeOOH,γ-FeOOH,Fe3O4,Fe2O3;模拟土壤能够很好地模拟真实土壤的腐蚀性,模拟土壤中pH值及盐含量的变化会加速腐蚀,使得模拟酸性土壤具有很好的加速性;模拟的酸性土壤室内加速腐蚀能够很好地区分Q235钢和907A低合金钢的耐土壤腐蚀性能,前者腐蚀速率约为后者的2倍。  相似文献   

12.
交流杂散电流对埋地Q235钢腐蚀行为的影响   总被引:2,自引:0,他引:2  
土壤腐蚀中的交流杂散电流对管线钢腐蚀严重,为了弄清其影响规律,在室内模拟埋地Q235管线钢所处环境及受交流杂散电流腐蚀状况,通过调节交流电压改变交流信号的强度,利用失重试验和电化学技术研究了交流杂散电流强度对Q235钢腐蚀行为的影响。结果表明:Q235钢在土壤中的腐蚀同时存在交流杂散电流腐蚀和电化学腐蚀,其中交流杂散电流腐蚀可加剧电化学腐蚀过程;随着杂散电流强度的增大,腐蚀程度大大增加;在交流杂散电流存在的情况下,随着所施加交流电压的增大,Q235钢腐蚀电位负移,腐蚀电流密度增大,塔菲尔斜率r(βa/βc)相应减小,易发生阳极反应;随着埋地时间的增加,Q235钢在土壤中的腐蚀速率先增大后减小,逐渐趋于稳定。  相似文献   

13.
过去对金属材料在滨海滩涂土壤中腐蚀行为的研究报道较少.配制了4种Cl-浓度的滨海滩涂土壤模拟溶液,应用极化曲线和电化学交流阻抗(EIS)测试技术,结合腐蚀形貌观察研究了Q235钢在其中的电化学腐蚀行为.结果表明:Q235钢在滨海滩涂土壤模拟液中处于活化溶解状态,没有明显的钝化行为;在20~80 g/LCl-浓度范围内,Q235钢的腐蚀速率随土壤模拟液中Cl-浓度的增加而减小.  相似文献   

14.
海洋硫酸盐还原菌对Q235钢腐蚀行为的影响   总被引:1,自引:0,他引:1  
采用失重法、开路电位、电化学阻抗谱(EIS)、极化曲线等方法,通过在海洋环境中浸泡不同时间对比分析有无硫酸盐还原菌(SRB)条件下Q235钢的腐蚀电化学特征,研究SRB对Q235钢的腐蚀行为的影响。结果表明,在含SRB的海水中,随着浸泡时间延长,Q235钢的腐蚀电流密度先从7.49mA·cm~(-2)增加至9.77mA·cm~(-2),然后逐渐减小至5.01mA·cm~(-2),最终增加至12.6mA·cm~(-2),且始终小于相同时间下无SRB海水中的腐蚀电流密度,表明SRB的存在抑制了Q235的腐蚀。在含SRB的海水中,Q235钢的腐蚀行为主要由Cl~-和生物膜共同影响。在SRB稳定生长阶段,腐蚀以生物膜抑制为主;在SRB指数生长阶段和衰亡阶段,生物膜抑制作用较弱,以Cl~-促进金属腐蚀为主。  相似文献   

15.
为了探究高强度钢与低碳钢在原油输送过程中腐蚀性的差异,采用动电位极化和电化学阻抗技术,并结合金相显微镜,研究了辽河油田不同原油输送温度对X70钢和Q235钢电化学腐蚀行为的影响规律。结果表明:2种管线钢在原油中的极化曲线均呈活化溶解特性;当温度变化范围为40~70℃时,随着输油温度的升高,X70钢和Q235钢的腐蚀速率均增大,腐蚀现象越来越显著;相同温度条件下,X70钢的腐蚀速率明显低于Q235钢,X70钢在辽河油田原油中的耐蚀性优于Q235钢。  相似文献   

16.
王森  骆鸿  李志忠  肖葵  吉宏亮  董超芳 《材料保护》2012,45(2):70-73,87
为了弄清3种典型接地金属材料(H62黄铜、Q235钢、镀锌钢)在陕西土壤中的腐蚀情况,采用失重法(外加电流浸泡)、电化学测试、扫描电镜(SEM)和X射线衍射(XRD)研究了其在陕西中部土壤模拟液中的腐蚀行为和电化学规律。结果表明:在有外加电流的模拟液中浸泡,随浸泡时间延长,Q235钢腐蚀速率逐渐变慢,镀锌钢表面镀锌层腐蚀较快,H62黄铜的腐蚀速率变化不大;Q235钢、镀锌钢、H62黄铜的腐蚀产物分别主要为α-FeOOH、β-FeOOH、Fe3O4,ZnO、Zn(OH)2、FeOOH、Zn5(CO3)2(OH)6和Cu2O、CuO、CuCl2;在含相同NaCl浓度的模拟液中,H62黄铜的耐腐蚀性能最好,镀锌钢的次之,Q235钢的最差。  相似文献   

17.
为降低钢在铝液中的腐蚀,通过对比纯铝、Al-Si、Al-Sn、Al-Mg铝合金熔体静态腐蚀作用下Q235钢/熔体界面的结构、形貌和腐蚀速率,研究了Si、Sn、Mg元素对Q235在铝合金熔体中静态腐蚀的影响。结果表明:Q235在不同铝合金熔体中均发生腐蚀,表面均形成Fe_2Al_5金属间化合物层,在铝液中添加Si可以使形成的Fe_2Al_5层由舌状转变为平板状,减小Fe_2Al_5层厚度,并显著减缓腐蚀速率;添加Sn和Mg不改变Fe_2Al_5层的形态和厚度,减缓腐蚀速率效果不如Si显著;Si、Sn、Mg不改变Fe_2Al_5择优生长的特点;Si降低腐蚀速率的机制是阻塞Fe_2Al_5空位孔道抑制原子扩散;Sn、Mg降低腐蚀速率的机制是占位阻隔减缓扩散速率。  相似文献   

18.
目前,国内鲜见关于Q235钢在直流杂散电流和酸性土壤联合作用下腐蚀行为的报道。通过失重法、电化学阻抗谱、显微镜、扫描电镜和X射线衍射法等,研究了直流杂散电流大小对Q235钢在含水率为30%和40%的鹰潭酸性土壤中腐蚀特性的影响。结果表明:土壤含水率和直流杂散电流对Q235钢的腐蚀行为有较强影响,其表面呈现局部腐蚀,电化学阻抗(EIS)谱为偏心的半圆;土壤的含水率相同时,EIS谱的容抗弧随着直流杂散电流的增加而减小,腐蚀速率和最大点蚀深度随着直流杂散电流的增加而增大;Q235钢在含水率为30%的土壤中的腐蚀快于在含水率为40%的土壤中的。  相似文献   

19.
Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析   总被引:1,自引:0,他引:1  
对Q235碳钢在10%,20%和34%(水饱和)含水滨海盐土中一个月的腐蚀形貌进行宏观和微观形貌观察,计算不同含水条件下的腐蚀失重,并对腐蚀产物进行Raman光谱分析。结果表明:由于受扩散控制的影响,Q235碳钢在10%含水滨海盐土中的腐蚀失重最大,其形貌以局部腐蚀为主;含水量增加,腐蚀失重迅速下降,腐蚀形貌由局部腐蚀转变为均匀腐蚀。Q235碳钢在20%和34%含水滨海盐土中的腐蚀产物主要是α-FeOOH;受腐蚀产物表面脱水的影响,在10%含水条件下的腐蚀产物出现分层结构,内层主要成分是α-FeOOH,腐蚀产物中的Fe2O3和Fe3O4等多分布在α-FeOOH外。  相似文献   

20.
为了弄清中央空调循环水系统对空调用钢造成的腐蚀及其影响因素,采用旋转挂片腐蚀试验和电化学方法对模拟空调水中空调用材Q235B钢的腐蚀行为进行了研究。结果表明:随着模拟空调水流速和温度的升高,溶液中溶解氧的扩散速度加快,电荷传递电阻减小,Q235B钢的腐蚀速率加快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号