首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Due to the limited availability of chemical reactants in the early process development of pharmaceuticals and fine chemicals, and sometimes the high-cost of catalyst, it is increasingly popular to use milliliter-scale slurry reactors with reaction volumes of 20 ml or less to screen catalyst candidates for three-phase reactions. To ensure the success of catalyst screening, it is advantageous to run reactions under kinetically controlled conditions so that the activities of different catalysts can be compared. Because catalysts with small particle sizes are used in slurry reactors, the reactions are susceptible to gas-liquid mass transfer limitations. This work presents an efficient way of enhancing gas-liquid mass transfer in milliliter-scale reactors through the use of magnetically driven agitation with complex motion. In the reactor described here, gas-liquid mass transfer coefficients can be doubled over those obtained with the agitation technique used in commercial milliliter-scale units. In addition, the reactor can achieve the top range of mass transfer coefficients obtained in a full-scale reactor. This work also presents the first measurements of gas-liquid mass transfer coefficients in milliliter-scale reactors, which are two orders-of-magnitude smaller than systems for which mass transfer coefficients have been reported earlier. Both physical and chemical absorption techniques are used.  相似文献   

2.
3.
Measuring techniques in gas-liquid and gas-liquid-solid reactors   总被引:2,自引:0,他引:2  
This article offers an overview of the instrumentation techniques developed for multiphase flow analysis either in gas/liquid or in gas/liquid/solid reactors. To characterise properly such reactors, experimental data have to be acquired at different space scale or time frequency. The existing multiphase flow metering techniques described give information concerning reactor hydrodynamics such as pressure, phases holdups, phases velocities, flow regime, size and shape of dispersed inclusions, axial diffusion coefficients. The measuring techniques are presented in two groups: the non-intrusive techniques that deliver global, cross-section-averaged or local data, and the intrusive probes that are dedicated to local measurements. Eventually some examples of multiphase instrumentation development are reported (trickle-bed and slurry bubble column at semi-industrial scale) in the refinery or petrochemical area.  相似文献   

4.
Analytical solutions giving the yield of a first order consecutive reaction in a gas-liquid contacting reactor are derived for cocurrent, countercurrent plug flow and perfectly mixed flow systems. The general solutions derived from the consideration of both reaction and transfer processes by a new mathematical method clarify the effect of mass transfer rate on the yield. Special solutions with the condition of infinite mass transfer rates can be used to choose the best flow system and to calculate the operating conditions for the greatest reactor yield.  相似文献   

5.
Gas-liquid contacting in tubular reactors was simulated using an Eulerian-Eulerian CFD approach in which accurate interphase momentum closure relations are incorporated, bubble-induced turbulence is accounted for, and population balance equations are used to describe bubble breakage and coalescence. The ability of two breakup kernels (Luo, H., Svendsen, H.F., 1996. Theoretical model for drop and bubble breakup in turbulent dispersions. A.I.Ch.E. Journal 42, 1225-1233; Lehr, F., Millies, M., Mewes, D., 2002. Bubble size distributions and flow fields in bubble columns. A.I.Ch.E. Journal 48, 2426-2443) and three coalescence kernels (Prince, M.J., Blanch, H.W., 1990. Bubble coalescence and breakup in air sparged bubble columns. A.I.Ch.E. Journal 36, 1485-1499; Luo, H., 1993. Coalescence, breakup and liquid recirculation in bubble column reactors. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim; Lehr, F., Millies, M., Mewes, D., 2002. Bubble size distributions and flow fields in bubble columns. A.I.Ch.E. Journal 48, 2426-2443) to accurately predict several flow parameters in pipe flow was tested.Good agreement between simulation and experimental results (radial profiles of gas holdup, turbulence intensity, and local Sauter bubble diameter) was achieved without the use of empirically derived relationships (such as Drift flux) by adjusting a single parameter which accounts for the deviation in the coalescence behaviour of tap water from that of pure water. The approach adopted in this investigation may thus be applicable to more complex hydrodynamic situations such as those encountered in mechanically agitated tanks and the need for extensive experimental testing may be replaced by single measurement of the effect interfacial properties have on coalescence rates.  相似文献   

6.
The present work investigates the influence of gas and liquid flow rates on inlet liquid distribution across monoliths operating in gas-liquid cocurrent downflow mode. Gas and liquid superficial velocities range from 0 to 68 and 1.4 to 8.5 cm/s, respectively. Gas-liquid distribution was studied using a packed bed liquid distributor and a pipe distributor for the aforementioned range of operating conditions. To determine the liquid distribution over the monolith, gravimetric, time-averaged liquid collection method was applied using a customized collector apparatus. Quantification of the distribution is reported using a suitably defined maldistribution factor. For each liquid velocity, gas velocities are varied and corresponding maldistribution factors are calculated. The results are reported in view of the varying operating conditions.  相似文献   

7.
气体和液体以喷射形式进料 ,是喷射式气液反应器的显著特征 ;喷射式气液反应器是一种多相反应器 ,具有较好的传热、传质和混合特性。对喷射式气—液反应器的型式及应用作了概要介绍  相似文献   

8.
Modelling of chemical reactors is reviewed with an emphasis on process development and scale-up. A distinction is made between modelling of chemical kinetics, of rate processes in volume elements and of whole reactors. Examples are mainly taken from papers presented at the Sixth International Symposium on Chemical Reaction Engineering. Special attention is given to the modelling of single phase reactors, fixed beds, trickle beds, fluid beds, and gas bubble reactors.  相似文献   

9.
A special type of jet loop reactor (JLR), designed for continuous operation and short residence times was investigated with regard to its mass transfer behaviour, described by the volumetric mass transfer coefficient kLa. The jet stream and superficial gas velocities are varied in two JLRs of different sizes, equipped with different nozzles. Fully desalinated water, 0.08 molar NaCI solution and solutions of different concentration of carboxymethyl cellulose (CMC) are used as the liquid phase. A steady-state physical method is employed to determine kLa: air oxygen is purged from the liquid phase by gaseous nitrogen. The measurements show that the reactor is characterized by high power density and high mass transfer performance. No limit of mass transfer capacity was observed in the chosen ranges of volumetric gas and liquid flow rates, i.e. at a given jet stream velocity, the relationship between kLa and the superficial gas velocity is nearly linear. The investigations show that the mass transfer contributed by the jet stream largely depends on liquid phase composition.  相似文献   

10.
The monolith bed is one of the promising catalytic reactors for a number of chemical gas-liquid-solid processes. In the present work, liquid saturations for five different monoliths have been investigated experimentally in a cold-flow unit with a reactor diameter of 5.0 cm. The influences of gas and liquid flow rates and of the direction of two-phase flow on liquid saturation were examined. The results indicate that the direction of flow has no significant influence on liquid saturation for proper gas-liquid distribution. The experimental results are in good agreement with predictions of the drift flux model using the distribution parameter proposed by Ishii (ANL Report ANL-77-47, 1977) along with the assumption of zero drift velocity.In preliminary experiments, gamma-ray computed tomography (CT) has been successfully applied to measure time-averaged liquid distribution over the monolith cross-section in a selected condition. The employment of a nozzle-type distributor provides an almost uniform liquid distribution over the monolith substrate. It is demonstrated that CT is a viable technique for studying two-phase flow in laboratory-scale monolith reactors.  相似文献   

11.
设计了一种底部带有碎流板的新型管式气液分配器。以水和空气代替工业上的原油和氢气进行冷模实验。实验过程为:水由水箱经水泵抽出,经液体流量计计量后进入实验塔上部的气液扩散器,气液两相流经急冷箱冷却后同时向下通过分配器。进入到接液装置的液体通过橡胶管导入到放置在地面上的17个标有编号的量筒中,未进入接液装置的液体流入水箱,气体则排放到大气中。最后用U形管差压计测量分配器的压力降。实验研究了该分配器的分配性能、压力降损失、气液相操作弹性和分布不均度,优化并确定该分配器的结构形式和结构参数。结果表明,该分配器的最佳工作条件为:液相量为0.3m3/h左右,气相量为20~30m3/h。  相似文献   

12.
陈阿强  黄青山  耿淑君  杨超 《化工进展》2018,37(4):1257-1266
喷射反应器是一种重要的化工过程强化设备,可有效强化传质与传热过程、加快反应速率、提高反应产率,近年来在多个领域得到应用。本文对两种典型喷射反应器的结构及其工作原理进行了描述,系统地分析了各操作参数和结构参数对气体吸入量和气泡直径的影响规律,指出研究气体吸入和气泡破碎两种机制的必要性。对采用计算流体力学方法模拟喷射反应器内气液两相流进行了分析,指出Mixture模型适合研究气体吸入量,无法准确描述气泡运动和破碎这两个重要过程,提出采用计算流体力学与群体平衡模型结合的方法进行模拟,关键在于建立适合喷射反应器的气泡破碎频率模型。另外,结合工业应用的实际情况,强调了加入催化剂颗粒相的多相流分析对于指导工业应用的重要意义。  相似文献   

13.
14.
《Chemical engineering science》1996,51(20):4579-4593
The authors present an experimental investigation of the residence time distribution (RTD) of the liquid in a gas-liquid upflow fixed-bed reactor with porous and nonporous particles and air/Newtonian or non-Newtonian systems. The piston-dispersion-exchange model with Danckwerts boundary conditions was used to describe the liquid flow. In the case of porous particles, the dynamic evolution of the tracer concentration in the particles was described in terms of diffusion phenomena. An imperfect pulse method was used to estimate the model parameters directly from the experimentally nonideal input and output response.  相似文献   

15.
16.
This paper presents a study on modelling and simulation of transient operational characteristics in multitubular fixed-bed reactors. The dynamic model of the reactor is based on a “porous body” approach which regards the intertubular space as a pseudo-homogeneous environment. Such an approach permits to take into account most factors in the geometrical design of the unit and thus to study the influence of various shell-side geometrical and operational parameters on the reactor behaviour. Based on the model, the dynamic responses of the two most common industrial reactor designs, i.e. the parallel flow unit with distributing plates and the crossflow reactor with disk-and-doughnut baffles have been investigated and compared. In addition, some problems of correct space discretization and use of time-dependent regridding procedures, are discussed.  相似文献   

17.
白璐  朱春英  付涛涛  马友光 《化学工程》2014,42(10):54-58,68
采用高速摄像仪对3种结构的微反应器内气液二相流型、流动分布及空隙率进行了研究。微反应器采用内置分布实现气液二相分布,3个内置分布器分布角度依次为60°,90°,120°。采用各支通道内气泡长度、气泡速度的相对偏差,相对标准偏差值体现气液二相分布的不均匀程度,考察了分布器结构对各支通道内空隙率的影响。结果表明:随内置分布器分布角度的增大,在实验范围内,各支通道气泡长度分布均匀程度减小,气泡运动速度分布均匀程度增大。各支通道空隙率变化与内置分布器分布角度及支通道与主通道的相对位置有关。  相似文献   

18.
Computational fluid dynamics (CFD) has been used as a successful tool for single-phase reactors. However, fixed-bed reactors design depends overly in empirical correlations for the prediction of heat and mass transfer phenomena. Therefore, the aim of this work is to present the application of CFD to the simulation of three-dimensional interstitial flow in a multiphase reactor. A case study comprising a high-pressure trickle-bed reactor (30 bar) was modelled by means of an Euler-Euler CFD model. The numerical simulations were evaluated quantitatively by experimental data from the literature. During grid optimization and validation, the effects of mesh size, time step and convergence criteria were evaluated plotting the hydrodynamic predictions as a function of liquid flow rate. Among the discretization methods for the momentum equation, a monotonic upwind scheme for conservation laws was found to give better computed results for either liquid holdup or two-phase pressure drop since it reduces effectively the numerical dispersion in convective terms of transport equation.After the parametric optimization of numerical solution parameters, four RANS multiphase turbulence models were investigated in the whole range of simulated gas and liquid flow rates. During RANS turbulence modelling, standard k-ε dispersed turbulence model gave the better compromise between computer expense and numerical accuracy in comparison with both realizable, renormalization group and Reynolds stress based models. Finally, several computational runs were performed at different temperatures for the evaluation of either axial averaged velocity and turbulent kinetic energy profiles for gas and liquid phases. Flow disequilibrium and strong heterogeneities detected along the packed bed demonstrated liquid distribution issues with slighter impact at high temperatures.  相似文献   

19.
许非石  杨丽霞  陈光文 《化工学报》2022,73(6):2552-2562
采用CFD方法对超声微反应器内的Taylor气液两相流的传质过程进行了模拟。针对传质过程中主要的介尺度结构,包括气泡表面波、空化声流、液相内的局部浓度,分析了其空间分布和时间演化规律。模拟结果有效捕捉了实验难以观测的液膜区域,并将液膜厚度与气泡表面波振动进行了关联,阐释了气液界面附近的空化声流对传质过程的强化作用。根据超声微反应器内Taylor流的传质特点,分别研究了不同流动和超声条件对液弹内和液膜处传质过程的影响,比较了各局部传质对整体传质效率的贡献。通过分析整体/局部Sherwood数与Peclet数间的关系,研究了超声效应对气液传质速率的影响。分析结果从介尺度角度验证了文献关于超声微反应器传质系数的计算,完善了超声微反应器内气液传质过程的强化理论。  相似文献   

20.
简要阐述了气相沉积法、共混法和分散法3种纳米流体的制备方法以及物理法、化学法两种纳米流体的分散技术。重点综述了纳米流体强化气液传质过程以及强化机理方面的最新研究成果。分析给出了纳米流体强化气液传质的几点原因:掠过效应、抑制气泡聚并机理、边界层混合机理、渗透机理以及多个影响因素相互关联作用。并预测出可能成为研究热点并有助于统一的强化理论表述提出的4个研究方向:影响纳米颗粒强化气液传质的各种因素相互耦合作用;纳米流体对氨、CO2、CO、O2和水蒸气以外的其它气体的物理化学吸收,进一步提出纳米颗粒强化气液传质普适性模型;搜集纳米颗粒影响气液界面附近的浓度分布;速度分布的微观信息以及纳米颗粒与气液界面相互作用的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号