首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
2D-C/SiC缺口试样的拉-拉疲劳损伤   总被引:1,自引:0,他引:1  
侯军涛  乔生儒  韩栋  吴小军  李玫 《材料导报》2005,19(11):140-143
研究了二维正交编织C/SiC双边对称圆弧缺口试样室温和高温真空的拉拉疲劳行为,正弦波疲劳应力比R=0.1,频率60Hz,循环基数106次.循环到规定周次停机,测量试样的共振频率、电阻,并进行SEM观察.结果表明,2D-C/SiC复合材料缺口试样拉-拉疲劳的S-N曲线非常平坦,其疲劳极限是同温度下缺口试样拉伸强度的80%~90%,光滑试样和缺口试样的疲劳极限比值与理论应力集中系数基本相同.缺口试样在疲劳过程中,电阻表征损伤与模量表征损伤的规律基本一致.在疲劳试验初期阶段,缺口附近损伤发展很快,主要表现为产生大量与加载方向垂直的裂纹,随着疲劳次数的增加,损伤发展减缓,但损伤形式逐渐增多,缺口附近与加载方向垂直的裂纹数量明显多于平行加载方向的裂纹数.讨论了电阻表征损伤和模量表征损伤之间的关系.  相似文献   

2.
通过三维编织炭纤维增强碳化硅基复合材料(3D C/SiC)在各种氧化气氛中的环境实验, 研究了氧化气氛中材料的质量变化率和剩余强度随温度变化规律及其相关性。根据3D C/SiC复合材料各组元的作用, 对其微观组织及炭纤维预制体的氧化损伤演变进行了分析。结果表明, 在各个氧化温度区间内, 3D C/SiC质量变化率与剩余强度随温度变化的规律基本相同, 两者结果相互对应。对于3D C/SiC, 用质量变化率作为对环境损伤敏感性表征的一个基本指标, 比用剩余强度表征更科学可靠。   相似文献   

3.
3D-C/SiC复合材料在室温和1300℃的拉-拉疲劳行为   总被引:9,自引:1,他引:8  
采用应力比为0.1,频率为60Hz的正弦波在室温和1300℃,10^-4Pa真空中对3D-C/SiC复合材料进行了拉-拉疲劳试验。同时用SEM分析了疲劳断口特征。结果表明:若取循环基数为10^6,1300℃疲劳极限为285MPa,约为抗拉强度的94%;室温疲劳极限为235MPa,约为抗拉强度的85%。1300℃疲劳断口的纤维拔出长度比室温短。疲劳损伤主要起源于纤维束编织交叉部位,随着疲劳循环次数的增加,纤维束周围基体的损伤也不断加剧。  相似文献   

4.
为明确外加磁场环境下铁磁构件疲劳损伤过程磁记忆信号变化规律,以45钢为对象,开展了地磁场(40 A/m)及外加磁场(200、400、600 A/m)环境下的低周疲劳实验。获取了各疲劳损伤阶段的磁场强度法向分量Hp(y)及梯度值K,提取了Hp(y)极差值Hp(y)Rv和K最大值Kmax,结合经典疲劳损伤模型进行了磁特征损伤累积参数拟合,构建了疲劳损伤模型。结果表明:随着疲劳循环周次增加,各数据采集点的Hp(y)值、应力集中部位K值和Hp(y)Rv值逐渐增大。相同循环周次下,随着外加磁场强度的增大,各数据采集点Hp(y)值和Hp(y)Rv值逐渐增大,且对应于疲劳断裂阶段的Kmax值逐渐增加。所构建的基于Hp(y)Rv的疲劳损伤模型拟合度较高。本文可为铁磁构件疲劳损伤评估提供技术方法支持。  相似文献   

5.
气氛与应力对3D C/SiC复合材料热震行为的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
为了确定薄界面 3D C/ SiC复合材料,即热解炭界面( PyC界面) 厚度低于标准厚度(200 nm) 的复合材料,在应力下和氧化性气氛中的抗热震性 , 利用感应加热环境箱在 700~1200℃氧化性气氛中进行了热震试验,基于试验后的强度保持率变化、拉伸应力2位移曲线变化、微结构变化和试验过程中的长度变化等研究了气氛和应力对其热震损伤行为的影响。研究发现,对于薄界面3D C/SiC复合材料,应力增加了裂纹开度,促进了C相的氧化,加快了热震损伤饱和速度,且蠕变应力对热震损伤的加速作用高于疲劳应力。氧化性气氛对界面的适度氧化和应力导致的界面脱粘能提高了薄界面3D C/SiC复合材料的强度保持率,说明其在应力条件下具有较好的抗氧化和抗热震性能。   相似文献   

6.
为研究陶瓷基复合材料的低周疲劳失效机理,通过试验和细观分析对其疲劳特性进行了探讨。研究了室温下加载循环数对2D针刺C/SiC复合材料拉-拉疲劳剩余强度的影响,并采用光学显微镜和扫描电子显微镜对该材料的断口形貌和微观结构进行了观察。结果表明:2D针刺C/SiC复合材料具有较好的抗疲劳特性,在85%极限拉伸强度(UTS)载荷下的循环数超过106;随着加载循环数的增加,剩余强度先增大然后下降。断口分析表明:纤维拔出长度随着加载循环数的增加而增加,说明在疲劳加载过程中,纤维/基体的界面结合强度降低,减缓了材料内部受力的不均匀性,提高了材料的承载能力,使2D针刺C/SiC复合材料出现了疲劳强化现象。   相似文献   

7.
沙宇  张嘉振  白士刚  周振功 《工程力学》2012,29(10):327-334
应用弹塑性有限元方法与增量塑性损伤理论指出疲劳裂纹扩展的压载荷效应是裂纹尖端塑性损伤的结果, 建立了在拉-压循环加载下铝合金疲劳裂纹扩展速率的双参数预报模型, 对LY12-M 高强铝合金MT 试件在应力比R=0、-0.5、-1、-2 进行了疲劳裂纹扩展实验。结果表明:当最大应力强度因子Kmax相同时, 恒幅拉压加载(应力比R<0)的疲劳裂纹扩展速率明显高于恒幅拉拉加载(应力比R=0)的情况, 拉-压循环载荷的压载荷部分对疲劳裂纹扩展速率具有促进作用。该文得出的LY12-M 铝合金在拉-压循环加载下的疲劳裂纹扩展速率预报模型与实验结果符合较好。  相似文献   

8.
杜双明  乔生儒 《材料工程》2011,(5):34-37,47
在1500℃,10<'-4>Pa真空中,采用应力比0.1和0.5,频率60Hz和20Hz的正弦波对三维编织炭纤维增强碳化硅基复合材料(3D-C<,f>/SiC)进行了拉-拉疲劳实验,利用SEM和HRTEM分别观察了疲劳试样的断口形貌和热解炭界面相的微结构.结果表明:若取循环基数为10<'6>次,当应力比为0.1时,20...  相似文献   

9.
纤维增强复合材料横向弹性常数   总被引:4,自引:2,他引:2       下载免费PDF全文
本文提出了一个计算单向纤维增强复合材料横向弹性模量和泊松系数的边界元计算模型.泊松系数ν12ν32ν13ν23的计算结果与实验结果吻合得很好.碳纤维增强复合材料横向模量E2E3的计算值也和实验结果完全吻合,而玻璃纤维/环氧横向模量E2E3的计算值却比实测值偏小约10%~25%.予计这是由于本文计算模型未考虑界面层的性能,它对材料的宏观性能产生了较明显的影响.   相似文献   

10.
12Cr1MoV钢低周疲劳损伤研究   总被引:2,自引:0,他引:2  
为了预测锅炉、压力容器的整体寿命,用连续介质损伤力学理论研究了工程材料的低周疲劳损伤演变过程.采用循环应力幅定义损伤变量D,根据有效应力概念,建立了低周疲劳各向同性连续损伤模型,并通过控制应变的疲劳试验,用该模型对锅炉常用材料12Cr1MoV钢试件进行了疲劳损伤的测量.研究表明,当循环进行到80%寿命时,损伤进入局部化阶段,宏观裂纹开始形成,较好地验证了损伤演变模型;所建立的模型形式简单,参数少,易测量,具有明确的物理意义,对锅炉的寿命估算有参考价值.  相似文献   

11.
For high-cycle fatigue of metals, the DC electrical resistance is a more sensitive parameter to the initiation of micro-cracks during the irreversible fatigue damage accumulation process. This implies that the electrical resistance is a suitable parameter that can be consistent with the fatigue damage physical mechanism. The relation between the ratio of electrical resistance changes and the cyclic fraction of the fatigue specimen may reasonably represent deterioration in mechanical properties of structural steels during the high-cycle fatigue process. The high-cycle fatigue damage accumulation model based on electrical resistance for structural steels was proposed. The model was verified by some experimental data for three structural steels; normalized 45C steel, 20 Mn steel and 16 Mn steel, and good agreement was obtained. The corresponding fatigue lifetime on the basis of the electrical resistance model was also performed. The results show that the approach to fatigue lifetime prediction and failure based on the electrical resistance is a good non-destructive technique.  相似文献   

12.
Gigacycle fatigue of ferrous alloys   总被引:9,自引:0,他引:9  
The objective of this paper is to determine the very long fatigue life of ferrous alloys up to 1 × 1010 cycles at an ultrasonic frequency of 20 kHz. A good agreement is found with the results from conventional tests at a frequency of 25 Hz by Renault between 105 and 107 cycles for a spheroidal graphite cast iron. The experimental results show that fatigue failure can occur over 107 cycles, and the fatigue endurance stress S max continues to decrease with increasing number of cycles to failure between 106 and 109 cycles. The evolution of the temperature of the specimen caused by the absorption of ultrasonic energy is studied. The temperature increases rapidly with increasing stress amplitudes. There is a maximum temperature between 106 and 107 cycles which may be related to the crack nucleation phase. Observations of fracture surfaces were also made by scanning electron microscopy (SEM). Subsurface cracking has been established as the initiation mechanism in ultra-high-cycle fatigue (>107 cycles). A surface–subsurface transition in crack initiation location is described for the four low-alloy high-strength steels and a SG cast iron.  相似文献   

13.
This paper reported simultaneous monitoring damage evolution of flexural fatigue in unidirectional carbon-fiber-reinforced carbon composites (C/C composites) by electrical resistance change (ERC) methods. The degree of irregularity in electrical resistance changes increased with stress levels increasing. The shapes of electrical resistance change rate–fatigue cycle curves can reflect stress levels and damage types of tested samples: sawtooth shapes reflected delamination at a higher stress level; and “peak” shapes reflected inner damages in one fiber bundle at the fatigue limit stress level. In addition, the similarity of initial electrical resistance–fatigue life curve and S–N curve was observed clearly. In summary, ERC methods can monitor the damage evolution and qualitatively estimate the fatigue life of unidirectional C/C composites.  相似文献   

14.
Abstract— The goals in this research were to analytically and experimentally investigate the fatigue behavior of a particulate reinforced metal matrix composite subjected to axial, torsional and combined axial/torsional loadings. A series of fully-reversed uniaxial, torsional and combined axial/torsional fatigue tests were performed on a 6061/Al2O3/20p-T6 metal matrix composite material. This research investigated the ability of the Fatemi-Kurath and the Smith-Watson-Topper (SWT) damage parameters to correlate the experimentally obtained fatigue life data and also to represent the fatigue life using uniaxial strain-life constants. The Fatemi-Kurath damage parameter correlated the experimental fatigue data from all loading cases better than the SWT damage parameter. Using uniaxial strain-life constants, both damage parameters predicted fairly reasonable fatigue life calculations for the intermediate fatigue lives (103 to 104 cycles to failure), while producing non-conservative results for the shorter fatigue lives (< 103 cycles to failure).  相似文献   

15.
The tension-tension fatigue behavior of a cross woven C/SiC composite was studied in terms of damage modes and damage development. The fatigue stress versus life diagram (S-N) curve and an endurance limit of 320–340 MPa (about 80% tensile UTS) for 106 cycles were obtained for the C/SiC composite. Different fatigue behaviors were found for samples that failed during fatigue and for samples that survived 106 cycles. Seven fatigue damage modes were observed, the development of which were used to explain the different fatigue behaviors. For the fatigue-failed samples, the degrees of damage of the seven modes increased with increase of cycles, leading to an increase in elapsed strain and a decrease in composite modulus. For fatigue-survived samples, the development of all the damage modes except for fiber breaking caused an initial increase of elapsed strain and decrease of composite modulus, but at high cycles, fiber bundle realignment and straightening in these samples led to partial recovery of the modulus and cessation of the damage development.  相似文献   

16.
In this study a comparison is made between the tensile static and fatigue behaviours of quasi-isotropic carbon/PEEK and carbon/epoxy notched laminates, selected as separate representatives of both tough and brittle matrix composites. Damage progression was monitored by various non-destructive (ultrasonic scanning and x-radiography) and destructive (deply and microscopic examinations) techniques, and by continuously measuring the change in stiffness, in order to identify the effect of damage on mechanical properties.
The experimental observations indicated that fatigue damage in carbon/epoxy laminates consists of a combination of matrix cracks, longitudinal splitting and delaminations which attenuate the stress concentration and suppress fibre fracture at the notch; as a consequence, fatigue failure can be reached only after very high numbers of cycles while tensile residual strengths continuously increase over the range of lives investigated (103–106 cycles). Due to the superior matrix toughness and the high fibre-matrix adhesion, the nature of fatigue damage in carbon/PEEK laminates strongly depends on the stress level. At high stresses the absence of early splitting and delaminations promotes the propagation of fibre fracture therefore resulting in poor fatigue performances and significant strength reductions; while at low stress levels damage modes are matrix controlled and this again translates into very long fatigue lives. These results indicate a strong influence of the major damage mechanisms typical of the two material systems on the behaviour of the laminates, with the nature, more than the amount, of damage appearing as the controlling parameter of the material response up to failure.  相似文献   

17.
Initiation and propagation behaviours of fatigue slip bands and persistent slip bands in lowcarbon steel have been investigated: fatigue slip bands were expressed quantitatively as a volume fraction which was products of the slip bands area (Σ As/A0), the depth (hs/h0) and the number of slipped grains (Gs/G0).

It was shown that distributions of fatigue slip bands and persistent slip bands showed the maximum at the angle division of 0° ˜ 10° (at and near the normal to the stress axis) and decreased gradually with increasing of the angle. And the normalized volume fraction of fatigue slip bands increased linearly in proportion to the number of cycles independently of the stress amplitude σa and the angle θ. The increment in volume fraction of fatigue slip bands meant the increment in fatigue damage and the fatigue life decreased in proportion to the increment in volume fraction of fatigue slip bands until its value reached a certain content. Then, the initiation rates of fatigue slip bands, persistent slip bands and stage I microcracks showed the increasing tendency with increasing of stress amplitude σa, and the propagating rates from fatigue slip bands to persistent slip bands and from fatigue slip bands to stage I micro-cracks were also similar increasing tendency with stress amplitude.  相似文献   


18.
Strain response of a C/SiC composite, which is cycled with ΔT1 of 500 °C at 50 MPa, ΔT2 of 400 °C at 100 MPa and ΔT3 of 300 °C at 150 MPa, was investigated. Measured thermo-elastic strain ranges are found to retain 0.209% for ΔT1, 0.168% for ΔT2, and 0.122% for ΔT3, independent upon the applied stress level. Non-linear variations of thermal cycling creep strain can reflect damage evolutions of the composites by changing its rate, which depends on temperature gradient and applied stress. After 104 thermal cycles, strength, modulus, and failure strain of the composites retain 60.29%, 84.2%, and 59% of the initial properties, respectively. The coating cracks of the cycled specimens are observed to be perpendicular to the applied stresses and arranged at relatively regular spacing, through which the fibers are oxidized superficially.  相似文献   

19.
The damage evolution of unidirectional C/SiC ceramic-matrix composite (CMC) under cyclic fatigue loading has been investigated using a hysteresis loss energy-based damage parameter at room and elevated temperatures. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy versus cycle number have been analyzed. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different cycle number and peak stress has been estimated. The experimental evolution of fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter versus cycle number has been predicted for unidirectional C/SiC composite at room and elevated temperatures. The predicted results of interface shear stress degradation, stress–strain hysteresis loops corresponding to different number of applied cycles, fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter as a functions of cycle number agreed with experimental data. It was found that the fatigue hysteresis energy-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号