首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined optical and atomic force microscope for live cell investigations   总被引:6,自引:0,他引:6  
We present an easy-to-use combination of an atomic force microscope (AFM) and an epi-fluorescence microscope, which allows live cell imaging under physiological conditions. High-resolution AFM images were acquired while simultaneously monitoring either the fluorescence image of labeled membrane components, or a high-contrast optical image (DIC, differential interference contrast). By applying two complementary techniques at the same time, additional information and correlations between structure and function of living organisms were obtained. The synergy effects between fluorescence imaging and AFM were further demonstrated by probing fluorescence-labeled receptor clusters in the cell membrane via force spectroscopy using antibody-functionalized tips. The binding probability on receptor-containing areas identified with fluorescence microscopy ("receptor-positive sites") was significantly higher than that on sites lacking receptors.  相似文献   

2.
We present results of phase separation of a single-component system of 1,2-dihexadecanoyl- sn -glycero-3-phospho-[ N -(4-nitrobenz)-2-oxa-1,3-diazolyl]ethanolamine in which a liquid-condensed (LC) phase co-exists with a liquid-expanded (LE) phase. Domain formation in the co-existence region was studied using a newly developed combined scanning near-field optical microscope–atomic force microscope (SNOM–AFM). We demonstrate for the first time that the topographic, friction, fluorescence and surface potential distributions for a phase-separated single-component Langmuir–Blodgett film between the LE and LC phases can be simultaneously observed using the SNOM–AFM with a thin-step etched optical fibre probe.  相似文献   

3.
We present a method for combined far‐field Raman imaging, topography analysis and near‐field spectroscopy. Surface‐enhanced Raman spectra of Rhodamine 6G (R6G) deposited on silver nanoparticles were recorded using a bent fibre aperture‐type near‐field scanning optical microscope (NSOM) operated in illumination mode. Special measures were taken to enable optical normal‐force detection for control of the tip–sample distance. Comparisons between far‐field Raman images of R6G‐covered Ag particle aggregates with topographic images recorded using atomic force microscopy (AFM) indicate saturation effects due to resonance excitation.  相似文献   

4.
Nano-scale structures of the YOYO-1-stained barley chromosomes and lambda-phage DNA were investigated by scanning near-field optical/atomic force microscopy (SNOM/AFM). This technique enabled precise analysis of fluorescence structural images in relation to the morphology of the biomaterials. The results suggested that the fluorescence intensity does not always correspond to topographic height of the chromosomes, but roughly reflects the local amount and/or density of DNA. Various sizes of the bright fluorescence spots were clearly observed in fluorescence banding-treated chromosomes. Furthermore, fluorescence-stained lambda-phage DNA analysis by SNOM/AFM demonstrated the possibility of nanometer-scale imaging for a novel technique termed nano-fluorescence in situ hybridization (nano-FISH). Thus, SNOM/AFM is a powerful tool for analyzing the structure and the function of biomaterials with higher resolution than conventional optical microscopes.  相似文献   

5.
We use atomic force microscopy in conjunction with a fluorescence microscope capable of optical sectioning to acquire images of white blood cells while force is applied with the AFM tip. The indentation profile within the cell is compared to the profile of the AFM tip: examples are shown for indentations at the center of the cell which are reasonable matches to the tip profile, and an additional example is shown for an indentation that is on the tilted side of a highly rounded cell and that differs from the tip shape. We also demonstrate that the AFM tip can interact with internal cell structures, we show that the contact area between the cell and the substrate can increase under applied pressure, that the main body of the cell can fuse with the extended lamellipodium, and that the cell can be displaced laterally by the AFM tip. The features illustrated here are relevant to the interpretation of indentation experiments that measure cell elasticity properties, as is discussed briefly. Microsc. Res. Tech. 78:626–632, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The protein surface layer of the bacterium Deinococcus radiodurans (HPI layer) was examined with an atomic force microscope (AFM). The measurements on the air-dried, but still hydrated layer were performed in the attractive imaging mode in which the forces between tip and sample are much smaller than in AFM in the repulsive mode or in scanning tunnelling microscopy (STM). The results are compared with STM and transmission electron microscopy (TEM) data.  相似文献   

7.
A combination of atomic force microscopy (AFM) and near field scanning optical microscopy has been used to study domain formation in dipalmitoylphosphatidylcholine (DPPC)/cholesterol monolayers with cholesterol concentrations ranging from 0 to 50%. The results show a clear evolution from a mixture of liquid expanded and liquid condensed phases for cholesterol concentrations < 10% to a mixture of liquid expanded and two cholesterol‐containing phases at intermediate concentrations, and finally to a single homogeneous liquid ordered phase for 33% cholesterol. Mixtures of the various phases are clearly identified by height differences in AFM and in some cases by fluorescence imaging for samples containing 0.5% BODIPY dye, which localizes preferentially in the more fluid phase. Note that fluorescence imaging, at least with the dye used here, is unable to distinguish between the cholesterol‐rich and cholesterol‐poor phases detected at intermediate cholesterol concentrations. The combination of fluorescence and AFM imaging provides a more complete picture of the phase evolution for cholesterol/DPPC monolayers than could be obtained by either technique alone, and presents substantial advantages over conventional fluorescence microscopy in that submicrometre‐sized domains can be readily detected.  相似文献   

8.
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set‐up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Microsc. Res. Tech. 76:357–363, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Phase-contrast imaging in the tapping mode atomic force microscopy (AFM) is a powerful method in surface characterization. This method can provide fine details about rough surfaces, which are normally obscured in topographic imaging. To illustrate some of the capabilities of phase-contrast imaging, AFM studies of Pt/Ti/SiO2/Si and Pb(Zr0.52Ti0.48)O3 (PZT) films were carried out. Phase-contrast imaging revealed fine details of their microstructures, including grain boundaries, triple junctions and twinning, which could not be detected by topographic imaging. The studies showed that phase-contrast imaging is capable of providing superior information about surface characteristics when compared to the standard topographic imaging.  相似文献   

10.
We report on the tip‐enhanced Raman spectra of C60 obtained on a custom‐built apertureless scanning near‐field optical microscope. A commercial atomic force microscope tip coated with 100 nm thickness of gold was used to enhance locally the Raman signal and permit topographic and spectral information to be acquired simultaneously. We present preliminary data which demonstrate the tip enhancement effect using C60 as a test sample.  相似文献   

11.
The micro and nanostructures of Martian soil simulants with particles in the micrometre‐size range have been studied using a combination of optical and atomic force microscopy (AFM) in preparation for the 2007 NASA Phoenix Mars Lander mission. The operation of an atomic force microscope on samples of micrometre‐sized soil particles is a poorly investigated area where the unwanted interaction between the scanning tip and loose particles results in poor image quality and tip contamination by the sample. In order to mitigate these effects, etched silicon substrates with a variety of features have been used to facilitate the sorting and gripping of particles. From these experiments, a number of patterns were identified that were particularly good at isolating and immobilizing particles for AFM imaging. This data was used to guide the design of micromachined substrates for the Phoenix AFM. Both individual particles as well as aggregates were successfully imaged, and information on sizes, shapes and surface morphologies were obtained. This study highlights both the strengths and weaknesses of AFM for the potential in situ investigation of Martian soil and dust. Also presented are more general findings of the limiting operational constraints that exist when attempting the AFM of high aspect ratio particles with current technology. The performance of the final designs of the substrates incorporated on Phoenix will be described in a later paper.  相似文献   

12.
We report on fluorescence enhancement in near field optical spectroscopy by apertureless microscopy. Our apertureless microscope is designed around a confocal fluorescence microscope associated with an AFM head. First, we show that the confocal microscope alone allows single molecule imaging and single molecule fluorescence analysis. When associated with the AFM head, we demonstrate, for the first time to our knowledge, that single molecule fluorescence is enhanced under the silicon tip. We tentatively attribute this effect to field enhancement under the tip.  相似文献   

13.
We report on fluorescence enhancement in near field optical spectroscopy by apertureless microscopy. Our apertureless microscope is designed around a confocal fluorescence microscope associated with an AFM head. First, we show that the confocal microscope alone allows single molecule imaging and single molecule fluorescence analysis. When associated with the AFM head, we demonstrate, for the first time to our knowledge, that single molecule fluorescence is enhanced under the silicon tip. We tentatively attribute this effect to field enhancement under the tip.  相似文献   

14.
Hillenbrand R 《Ultramicroscopy》2004,100(3-4):421-427
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics—a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.  相似文献   

15.
Here we demonstrate a new microscopic method that combines atomic force microscopy (AFM) with fluorescence resonance energy transfer (FRET). This method takes advantage of the strong distance dependence in Förster energy transfer between dyes with the appropriate donor/acceptor properties to couple an optical dimension with conventional AFM. This is achieved by attaching an acceptor dye to the end of an AFM tip and exciting a sample bound donor dye through far-field illumination. Energy transfer from the excited donor to the tip immobilized acceptor dye leads to emission in the red whenever there is sufficient overlap between the two dyes. Because of the highly exponential distance dependence in this process, only those dyes located at the apex of the AFM tip, nearest the sample, interact strongly. This limited and highly specific interaction provides a mechanism for obtaining fluorescence contrast with high spatial resolution. Initial results in which 400 nm resolution is obtained through this AFM/FRET imaging technique are reported. Future modifications in the probe design are discussed to further improve both the fluorescence resolution and imaging capabilities of this new technique.  相似文献   

16.
Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning. Amplitude and phase images at intermodulation frequencies exhibit enhanced topographic and material contrast.  相似文献   

17.
A noncontact atomic force microscope (nc-AFM) operating in magnetic fields up to ±7 T and liquid helium temperatures is presented in this article. In many common AFM experiments the cantilever is mounted parallel to the sample surface, while in our system the cantilever is assembled perpendicular to it; the so called pendulum mode of AFM operation. In this mode measurements employing very soft and, therefore, ultrasensitive cantilevers can be performed. The ultrahigh vacuum conditions allow to prepare and transfer cantilevers and samples in a requested manner avoiding surface contamination. We demonstrate the possibility of nc-AFM and Kelvin force probe microscopy imaging in the pendulum mode. Ultrasensitive experiments on small spin ensembles are presented as well.  相似文献   

18.
The accuracy of topography imaging in contact force mode of atomic force microscopy (AFM) depends on the one-to-one corresponding relationship between the cantilever deflection and the tip–sample distance, whereas such a relationship cannot be always achieved in the presence of friction and incline angle of sample surface. Recently, we have developed a novel operation mode in which we keep the van der Waals force as constant instead of the applied normal force, to eliminate the effect of inclination angle and friction on topography imaging in the contact force mode. We have improved our AFM to enable the new operation mode for validation. Comparative experiments have been performed and the results have shown that the effect of friction and inclination angle on topography imaging in contact mode of AFM can be eliminated or at least decreased effectively by working in the new operation mode we present.  相似文献   

19.
In this study we report an atomic force microscopy (AFM) investigation of the actin cortical cytoskeleton of Xenopus laevis oocytes. Samples consisted of inside‐out orientated plasma membrane patches of X. laevis oocytes with overhanging cytoplasmic material. They were spread on a freshly cleaved mica surface, subsequently treated with Triton X‐100 detergent and chemically fixed. The presence of actin fibres in oocyte patches was proved by fluorescence microscopy imaging. Contact mode AFM imaging was performed in air in constant force conditions. Reproducible high‐resolution AFM images of a filamentous structure were obtained. The filamentous structure was identified as an actin cortical cytoskeleton, investigating its disaggregation induced by cytochalasin D treatment. The thinnest fibres showed a height of 7 nm in accordance with the diameter of a single actin microfilament. The results suggest that AFM imaging can be used for the high‐resolution study of the actin cortical cytoskeleton of the X. laevis oocyte and its modifications mediated by the action of drugs and toxins.  相似文献   

20.
A customized atomic force microscopy (AFM) instrument optimized for imaging protein crystals in solution is described. The device was tested on crystals and Langmuir-Blodgett (LB) films of two proteins with quite different molecular weights. This approach enables the periodicity and morphology of crystals to be studied in their mother liquid, thereby preserving the native periodic protein crystal structure, which is typically destroyed by drying. Moreover, the instrument appears to distinguish protein crystals from salt crystals, which under the optical microscope are frequently quite similar, the difference between them often being revealed only during x-ray analysis. AFM estimates of the packing, order, and morphology of the given single proteins appear quite similar in the LB thin film and in the crystals, which means that routine crystal measurements can be performed at high resolution. The AFM consists of a custom-built measuring head and a homemade flexible SPM controller which can drive the head for contact, noncontact and spectroscopy modes, thus providing the user with a high degree of customization for crystal measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号