首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2019,45(8):9799-9806
(Nb1-xTax)4AlC3 (x = 0–0.5) ceramics were prepared by the hot press sintering method. The XRD results show that the second phase (Nb1-xTax)C is formed when the Ta content increases to 25 mol%. The SEM micrographs show that (Nb1-xTax)C has a core/rim structure, whose formation mechanism was also investigated. Substituting some Ta for Nb can significantly improve the mechanical properties of Nb4AlC3. (Nb0.75Ta0.25)4AlC3 exhibits an excellent fracture toughness of 8.3 ± 0.3 MPa m1/2 at room temperature (RT). The highest Young's modulus (349 ± 16 GPa) and Vickers hardness (4.5 ± 0.3 GPa) at RT are exhibited by the (Nb0.5Ta0.5)4AlC3 sample, which correlate to increases of 18% and 80%, respectively, compared with those of Nb4AlC3. The flexural strengths of (Nb0.5Ta0.5)4AlC3 are 439 ± 18 MPa at RT and 344 ± 22 MPa at 1100 °C, which correlate to increases of 27% and 45%, respectively, compared with those of Nb4AlC3. The solid solution of Ta and the formation of (Nb1-xTax)C are beneficial to the strengthening of Nb4AlC3. The coefficient of thermal expansion (CTE) increases slightly from 7.08 × 10−6 K−1 for Nb4AlC3 to 7.24 × 10−6 K−1 for (Nb0.75Ta0.25)4AlC3 at 25–1400 °C. The thermal conductivity of (Nb0.75Ta0.25)4AlC3 (28.4–29.8 W/m·K) is higher than that of Nb4AlC3 (18.1–21.2 W/m·K) over the whole test range (25–1000 °C). Owing to their excellent mechanical and thermal properties, Ta-doped Nb4AlC3 ceramics have good potential as structural materials.  相似文献   

2.
The MAX phases and MXenes are attractive materials for diverse applications. In this work, the two-dimensional Nb3.5Ta0.5C3Tx and Nb3.9W0.1C3Tx MXenes and the based phase Nb4C3Tx (where Tx is a surface termination) were synthesized by selective etching off aluminum, Al, from their corresponding MAX phase ceramics Nb3.5Ta0.5AlC3, Nb3.9W0.1AlC3 and Nb4AlC3. The XRD results indicate that the intermediate Al layers have been removed as the intensity of the major peaks of all MAX ceramics were reduced. The typical multilayered structure also confirms the successful synthesis of MXenes. X-ray photoelectron spectroscopy (XPS) shows that Nb0 exists in the three MAX ceramics owing to the metallic Nb-Nb bonding, which is inherent in the MAX ceramics. Since oxidation in the etching process is inevitable, there are some high-valent oxidation states exhibiting in the M-site elements. The electrochemical performance of the as-prepared MXenes towards sodium-ion batteries (SIBs) was further examined by cyclic voltammetry (CV), galvanostatic charge-discharge and rate performance tests. The results exhibit that the based phase Nb4C3Tx shows better electrochemical performance than Nb3.5Ta0.5C3Tx and Nb3.9W0.1C3Tx.  相似文献   

3.
Lead-free (K0.4425Na0.52Li0.0375) (Nb0.9625−xSbxTa0.0375)O3 piezoelectric ceramics were prepared by the conventional sintering method. The effects of the Sb content on the phase structure, microstructure, dielectric, piezoelectric, and ferroelectric properties of the (K0.4425Na0.52Li0.0375) (Nb0.9625−xSbxTa0.0375)O3 ceramics were investigated. The much higher Pauling electronegativity of Sb compared with Nb makes the ceramics more covalent. By increasing x from 0.05 to 0.09, all samples exhibit a single perovskite structure with an orthorhombic phase over the whole compositional range, and the bands in the Raman scattering spectra shifted to lower frequency numbers. The grain growth of the ceramics was improved by substituting Sb5+ for Nb5+. Significantly, the (K0.4425Na0.52Li0.0375) (Nb0.8925Sb0.07Ta0.0375)O3 ceramics show the peak values of the piezoelectric coefficient (d33), electromechanical coupling coefficient (kp), and dielectric constant (?), which are 304 pC/N, 48% and 1909, respectively, owing to the densest microstructure of typical bimodal grain size distributions. Besides, the underlying mechanism for variations of the electrical properties due to Sb5+ substitution was explained in this work.  相似文献   

4.
High electric field-induced strain with ultralow hysteresis, which is often generated based on electrostrictive effects in ferroelectric materials, is highly desired due to its potential applications in high-precision displacement actuators. In this paper, (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 [(1-x)(PMN-PT)-xBZN] ceramics were fabricated by a solid-state reaction method. The effect of Ba(Zn1/3Nb2/3)O3 (BZN) content on dielectric and electrostrictive properties in relaxor ferroelectric PMN-PT solid solutions was investigated in detail by dielectric spectra, polarization-electric field (P-E) hysteresis loops and strain-electric field (S-E) curves. With an increasing BZN content, the temperature stability of the dielectric permittivity of (1-x)(PMN-PT)-xBZN is improved due to the formation of two coexistent phases. A high electrostrictive strain (~0.17% at 60?kV/cm) with an ultralow hysteresis (<10%) characteristic is obtained in a composition where x?=?0.1725. The strain versus polarization (S-P) curves measured from 30?°C to 130?°C can be well fitted based on a quadratic relation, suggesting the dominating role of the electrostrictive effect. The longitudinal electrostrictive coefficient Q33 for this system ranges from 0.0254?m4/C2 to 0.0318?m4/C2. Our results suggest that (1-x)(PMN-PT)-xBZN ferroelectric ceramics are potential candidates for applications in capacitors and high-precision displacement actuators.  相似文献   

5.
Si3N4/SiC porous ceramics were fabricated by a novel foam-gelcasting and microwave-assisted catalytic nitridation method at a temperature as low as 1273?K for 60?min or after only 10?min at 1373?K utilizing commercial Si and SiC with trace of impurity Fe (0.33?wt%) as starting materials. The Si3N4/SiC porous ceramics containing porosity of 68.54?±?0.73% which were fabricated at 1373?K for 10?min had flexural and compressive strengths of 5.28?±?0.17?MPa and 12.86?±?1.55?MPa.  相似文献   

6.
The structural and thermoelectric (TE) properties of polycrystalline CaMn1-xNbxO3-δ (0.025?≤?x?≤?0.25) were studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and electrical transport measurements, with an emphasis placed on the Nb5+ content. The CaMn1-xNbxO3-δ crystallized in an orthorhombic perovskite structure of the Pnma space group. The density and grain size of the CaMn1-xNbxO3-δ samples gradually decreased when Nb5+ ions substituted Mn4+ ions. The CaMn0.95Nb0.05O3-δ sample contained charge-ordered domains, stacking faults, and micro-twins. The substitution of Nb5+ for Mn4+ up to x?=?0.15 led to an increase in electrical conductivity, mainly due to an increased electron concentration. The CaMn1-xNbxO3-δ samples with low Nb5+ contents (0.025?≤?x?≤?0.15) showed metallic behavior, whereas those with high Nb5+ contents (0.2?≤?x?≤?0.25) showed semiconducting behavior. The Nb5+ substitution lowered the absolute value of the Seebeck coefficient for the CaMn1-xNbxO3-δ samples due to an increased electron concentration. The largest power factor (1.19?×?10?4 W?m?1 K?2) was obtained for CaMn0.95Nb0.05O3-δ at 800?°C. The partial substitution of Nb5+ for Mn4+ in CaMnO3-δ proved to be highly effective for improving high-temperature TE properties.  相似文献   

7.
In this study, tungsten tetraboride (WB4) ceramics were synthesized in situ from powder mixtures of W and amorphous B with Ni as a sintering aid by reactive hot pressing method. The as-synthesized ceramics exhibited porosity as low as 0.375% and ultra-high Vickers hardness (Hv), as much as 49.808?±?1.683?GPa (for the low load of 0.49?N). It was seen that the addition of Ni greatly improved the sinterability of WB4 ceramic. Besides, the flexural strength and fracture toughness of WB4 ceramic were measured for the first time to be 332.857?±?36.763?MPa and 4.136?±?0.259?MPa?m1/2, respectively, suggesting that the ceramic has good mechanical properties. The effects of sintering temperature and holding time on the densification, Vickers hardness, and mechanical properties of WB4 ceramics were also investigated systematically as part of our study. The results indicated that increasing the sintering temperature can obviously improve the densification and mechanical properties of the ceramics. The bulk density and Vickers hardness of WB4 ceramic sintered at 1650?°C for 60?min under 30?MPa revealed the highest values of 6.366?g?cm?3 and 27.948?±?0.686?GPa (for the high load of 9.8?N), respectively. The flexural strength increased to the highest value of 332.857?±?36.763?MPa for sintering temperature up to 1550?°C, but decreased slightly as the sintering temperature further increased to 1650?°C. On the other hand, the fracture toughness increased gradually with increasing temperature. It was also found that Vickers hardness showed a similar trend as the densification of the samples with increasing temperature and holding time. Besides, no obvious improvements in the densification, mechanical properties, and Vickers hardness of the samples with sintering time were observed in this study. The microstructure and fracture behaviours of the as-synthesized WB4 ceramic were also revealed, and the toughening mechanism has been discussed.  相似文献   

8.
In this work, ultra-low loss Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics were successfully prepared via the conventional solid-state method. X-ray photoelectron spectroscopy (XPS), thermally stimulated depolarization current (TSDC) and bond energy were used to determine the distinction between intrinsic and extrinsic dielectric loss in (Mg1/3Nb2/3)4+ ions substituted ceramics. The addition of (Mg1/3Nb2/3)4+ ions enhances the bond energy in unit cell without changing the crystal structure of Li2MgTiO4, which results in high Q·f value as an intrinsic factor. The extrinsic factors such as porosity and grain size influence the dielectric loss at lower sintering temperature, while the oxygen vacancies play dominant role when the ceramics densified at 1400?°C. The Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr =?16.19, Q·f?=?160,000?GHz and τf =??3.14?ppm/°C. In addition, a certain amount of LiF can effectively lower the sintering temperature of the matrix, and the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4-3?wt% LiF ceramics sintered at 1100?°C possess balanced properties with εr?=?16.32, Q·f?=?145,384?GHz and τf =??16.33?ppm/°C.  相似文献   

9.
Novel lead-free [(Bi0.5Na0.5)0.94Ba0.06]0.97La0.03Ti1-x(Al0.5Nb0.5)xO3 ceramics (BNBLT-xAN) were prepared by the conventional solid state sintering method. The dielectric, ferroelectric, ac impedance and energy-storage performance were systematically investigated. Temperature dependent permittivity curves showed that relaxation properties of sintered ceramics gradually diminished with the increase of AN. The introduction of AN gave rise to a slimmer polarization hysteresis loop (P-E) and an enhanced dielectric breakdown strength (DBS). Therefore, the optimum energy-storage performance were realized at x?=?0.05 with the energy-storage density (Wrec) of 1.72?J/cm3 and energy-storage efficiency (η) of 85.6% at 105?kV/cm, accompanied with the excellent temperature stability and fatigue performance. The results demonstrated that BNBLT-xAN system was a promising lead-free candidate for energy-storage applications.  相似文献   

10.
TiO2 was selected as effective sintering aid for pressureless sintering of Ti3AlC2 ceramics in this study. The addition of only 5?wt% TiO2 largely promotes the densification and nearly dense Ti3AlC2 ceramic was obtained by pressureless sintering at 1500?°C. Significant strengthening and toughening effects were observed with the addition of TiO2. High Vickers hardness, flexural strength and fracture toughness of 3.22?GPa, 298?MPa and 6.2?MPa?m?1/2, respectively, were achieved in specimen pressureless sintered with 10?wt% TiO2. Additionally, the addition of 5?wt% TiO2 had no deleterious effect on the excellent oxidation resistance of Ti3AlC2 ceramic under 1200?°C water vapor atmosphere, while addition of 10?wt% TiO2 accelerates the oxidation rate by two orders of degree.  相似文献   

11.
The present study aims at synthesizing the Nb4AlC3 MAX phase by reactive hot pressing using Nb:Al:NbC as starting materials. In order to identify the reaction path, interrupted tests at intermediate temperatures were performed as well as differential thermal analyses (DTA) of powders. Coupling between DTA and XRD data and SEM/EDS analyses of the samples allows a better understanding of the reaction mechanisms. Pure and fully dense Nb4AlC3 samples were obtained and characterized for the first time by EBSD and SEM to assess, using an original method, grain size and microstructure. For instance, in the present study, an average grain length of 5–7?µm was obtained.Standard mechanical characterizations showed interesting properties: KIc≈?6?MPa?m1/2, E?≈?350?GPa and α?≈?7.10?6 °C?1. Oxidation performance of Nb4AlC3 was evaluated at 1100?°C under cyclic conditions. A breakaway regime was instantaneously established for this condition, thus demonstrating the impossibility of using such an unprotected material for structural applications at high temperature in air environment.  相似文献   

12.
The Li2MgTi1-x(Mg1/3Nb2/3)xO4 (0?≤x?≤?0.5) ceramics were prepared by the conventional solid-state method. The relationship among phase composition, substitution amount and microwave dielectric properties of the ceramics was symmetrically investigated. All the samples possess the rock salt structure with the space group of Fm-3m. As the x value increases from 0 to 0.5, the dielectric constant linearly decreases from 16.75 to 15.56, which can be explained by the variation of Raman spectra and infrared spectra. The Q·f value shows an upward tendency in the range of 0?≤x?≤?0.3, but it then decreases when x?>?0.3. In addition, the temperature coefficient of resonant frequency (τf) is shifted toward zero with the increasing (Mg1/3Nb2/3)4+ addition. By comparison, the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr=?16.19, Q·f =?160,000?GHz and τf =??3.14?ppm/°C.  相似文献   

13.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

14.
Compared with the other types of ceramic capacitors, relaxor ferroelectric ceramics demonstrate superior potential in energy-storage fields due to their higher energy efficiency, faster charge-discharge rate, and better temperature stability. In this study, we designed and synthesized a novel high performance BaTiO3-based ((1-x)BaTiO3-xBi(Ni2/3Nb1/3)O3, x?=?0.08, 0.10, 0.12, and 0.14) energy-storing ceramics through ferroelectric properties modulation, which display typical relaxor characteristics. The optimum energy storage properties, i.e. ultrahigh energy efficiency (95.9%), high energy-storage density (2.09?J?cm?3) and good temperature stability (the fluctuations in energy-storage properties are less than 5% over 20–120?°C) are obtained at x?=?0.12 (0.88BT-0.12BNN). The 0.88BT-0.12BNN relaxor ferroelectric ceramic demonstrates obviously superior comprehensive energy-storage properties than most of other unleaded ceramics. Besides, investigation efforts were also spent on the pulsed charge-discharge performance of the 0.88BT-0.12BNN ceramic to evaluate its feasibility as energy-storage devices. More importantly, the 0.88BT-0.12BNN ceramic also exhibits outstanding charge-discharge performance with fast discharge rate (t0.9 <?100?ns), a high level of power density (36.9?MW?cm?3), and good temperature stability. These excellent performance parameters qualify this novel and environmentally friendly BaTiO3-based ceramic as a promising alternative option in energy-storage section. Meanwhile, this study also provides an effective approach to attain high energy-storage density as well as energy efficiency in BaTiO3-based relaxor ferroelectric ceramics.  相似文献   

15.
It is a grand challenge to achieve high energy density (W) and efficiency (η) simultaneously under a low electric field (LE) to obtain new high energy storage capacitors. Similar to anti-ferroelectrics, the (1-x)NBT-xBaMg1/3Nb2/3O3 relaxor material exhibits a non-linear dependence on electric field, which is caused by a reversible field-induced phase transition. This leads to high W (2.37 J/cm3) and η (81.5 %) under a LE of 155 kV/cm, which makes it superior to other bulk ceramics. Combining large polarizability of Ba2+ in A-site and local structural heterogeneity on the B-site by Mg1/3Nb2/34+, enhanced relaxor behavior and decreased polar-structure size were induced in (1-x)NBT-xBaMg1/3Nb2/3O3 ceramics. The permittivity, nevertheless, stays high at ~2273±15 %. Furthermore, the electrical properties become stable in a wide temperature range from 44?396 °C for the sample with x=0.15. In addition, high current density/CD (450 A/cm2), power density/PD (23 MW/cm3) and discharge density/WD (0.57 J/cm3) were realized tested with pulse discharge testing. Our work will provide a development guidance for dielectric energy storage ceramics at low field and high fields with excellent temperature stability.  相似文献   

16.
Two-layer structured ferroelectric ceramics, Ca1-x(NaBi)0.5xBi2Nb2O9 (x?=?0.0–0.5; CNBN-x), were prepared by solid-state sintering. An artificial pseudo-morphotropic phase boundary was formed by the substitution of Ca with NaBi, and the crystal structure tended to crystallise in the pseudo-tetragonal phase as the increase of NaBi content. Curie temperature (Tc) slightly reduce and remain high value with the increase of NaBi content, which is in the range of 880–935?°C. Moreover, enhanced piezoactivity (d33) and ferroelectricity (Pr) accompanying with decreased dielectric loss can be acquired in NaBi-modified CaBi2Nb2O9. The CNBN-0.1 had the best performance, and its Tc, d33 and Pr was 925?°C, 14.4 pC/N and 6.0 μC/cm2, respectively. Thermal annealing measurement exhibited that the piezoelectric properties of Ca1-x(NaBi)0.5xBi2Nb2O9 had good temperature stability up to 800?°C. Therefore, the NaBi-modified CaBi2Nb2O9 ceramics are perceived to be of promising candidates for high-temperature applications.  相似文献   

17.
W/Cr co-doped Aurivillius-type CaBi2Nb2-x(W2/3Cr1/3)xO9 (CBN) (x?=?0.025, 0.050, 0.075, 0.100, and 0.150) piezoelectric ceramics were prepared by the conventional solid-state reaction method. The crystal structure, microstructure, dielectric properties, piezoelectric properties, and electrical conductivity of these ceramics were systematically investigated. After optimum W/Cr modification, the CBN ceramics showed both high d33 and TC. The ceramic with x?=?0.1 showed a remarkably high d33 value of ~15 pC/N along with a high TC of ~931?°C. Moreover, the ceramic also showed excellent thermal stability evident from the increase in its planar electromechanical coupling factor kp from 8.14% at room temperature to 11.04% at 600?°C. After annealing at 900?°C for 2?h, the ceramic showed a d33 value of 14?pC/N. Furthermore, at 600?°C, the ceramic also showed a relatively high resistivity of 4.9?×?105 Ω?cm and a low tanδ of 9%. The results demonstrated the potential of the W/Cr co-doped CBN ceramics for high-temperature applications. We also elucidated the mechanism for the enhanced electrical properties of the ceramics.  相似文献   

18.
In current study, only 5?mol% Mn2+ was applied to fabricate high performance microwave dielectric ZnGa2O4 ceramics, via a traditional solid state method. The crystal structure, cation distribution and microwave dielectric properties of as-fabricated Mn-substituted ZnGa2O4 ceramics were systematically investigated. Mn2+-substitution led to a continuous lattice expansion. Raman, EPR and crystal structure refinement analysis suggest that Mn2+ preferentially occupies the tetrahedral site and the compounds stay normal-spinel structure. The experimental and theoretical dielectric constant of Zn1-xMnxGa2O4 ceramics fit well. In all, this magnetic ion, Mn2+, could effectively adjust the τf value to near zero and double the quality factor from 85,824?GHz to 181,000?GHz of Zn1-xMnxGa2O4 ceramics at the meantime. Zn1-xMnxGa2O4 (x?=?0.05) ceramics sintered at 1400?°C for 2?h exhibited excellent microwave dielectric properties, with εr =?9.7(@9.85?GHz), Q?f?=?181,000?GHz, tanδ?=?5.44?×?10?5,and τf =???12?ppm/°C.  相似文献   

19.
(CaBi4Ti4O15)1-x(Bi4Ti3O12)x (CBT-xBIT) Aurivillius phase ceramics were synthesized by the conventional solid reaction method. The evolution of the structure and the electrical properties of CBT-xBIT ceramics were systematically investigated. Due to the enhanced spontaneous polarization induced by internal stresses on the Bi2O2 layers in the CBT-xBIT structure, the optimal piezoelectric coefficient (d33 ~ 13?pC/N) was obtained in the ceramics with x?=?0.3 while exhibiting a relatively good thermal stability in the temperature range of 20–700?°C. The dc resistivity (ρdc) of the CBT-xBIT ceramics exhibited a higher value (≥?109 Ω?cm) at room temperature, and the tan δ value of CBT-xBIT (x= 0, 0.1 and 0.3) within the temperature range of 20–500?°C maintained stability as a result of the domain structure and point defect concentration in the ceramics. In addition, a distinctive double dielectric peak anomaly was observed in the εr-T curves of the CBT-xBIT (x= 0.3, 0.5 and 0.7) ceramics, and it plays a remarkable role in the thermal stability of the piezoelectricity of CBT-xBIT ceramics. As a result, such research can benefit high temperature practical piezoelectric devices.  相似文献   

20.
The phase composition, microstructure, microwave dielectric properties of (Al0.5Nb0.5)4+ co-substitution for Ti site in LiNb0.6Ti0.5O3 ceramics and the low temperature sintering behaviors of Li2O-B2O3-SiO2 (LBS) glass were systematically discussed. XRD patterns and EDS analysis result confirmed that single phase of Li1.075Nb0.625Ti0.45O3 solid solution was formed in all component. The increase of dielectric constant (εr) is ascribed to the improvement of bulk density. The restricted growth of grain has a negative influence on quality factor (Q×f) value. The τf value could be continuously shifted to near zero as the doping content increases. Great microwave dielectric properties were obtained in LiNb0.6Ti(0.5-x)(Al0.5Nb0.5)xO3 ceramics (x?=?0.10) when sintered at 1100?℃ for 2?h: εr =?70.34, Q×f =?5144?GHz, τf =?4.8?ppm/℃. The sintering aid, LBS glass, can effectively reduce the temperature and remain satisfied microwave performance. Excellent microwave dielectric properties for x?=?0.10 were obtained with 1.0?wt% glass: εr =?70.16, Q×f =?4153?GHz (at 4?GHz), τf =?-0.65?ppm/℃ when sintered at 925?℃ for 2?h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号