首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(2):2343-2349
LiVO3 has been considered as a promising cathode material owing to the high specific capacity. But it suffers from the poor rate capability and cyclability. Carbon coating is an effective approach to improve the electrochemical performance, but the synthesis of carbon-coated LiVO3 has not been reported. Herein, we propose a novel method to synthesize carbon-coated LiVO3 (C@LVO) using a simple solution evaporation of LiNO3, VOC2O4 and resol precursors followed by a sync-carbonization strategy. In this approach, VOC2O4 is utilized as the precursor for the first time. Carbon layers and encapsulated LVO are simultaneously generated. An amorphous carbon layer with thickness around 10 nm is observed on the surface of LVO particles using TEM. Compared to bare LVO, C@LVO shows a higher rate capability and more stable cyclability. C@LVO exhibits initial charge and discharge capacities of 281.3 and 339.5 mA h g−1 and features long-term cyclability (125.2 and 125.4 mA g−1 at 200 mA g−1 after 120 cycles). They possess lower charge-transfer resistance in comparison with bare LVO due to enhanced conductivity of the carbon layer. The higher specific capacity, improved cyclability and rate capability can be greatly attributed to the coated carbon layer, which resists the aggregation of LVO particles, and prevents the side reaction with electrolyte.  相似文献   

2.
Two kinds of carbon nanotubes (CNTs), i.e., short carbon nanotubes (CNTs-1) synthesized by co-pyrolysis method and long carbon nanotubes (CNTs-2) produced using common CVD technique were comparatively investigated as anode materials for lithium ion batteries via transmission electron microscope (TEM), high-resolution TEM and a variety of electrochemical testing techniques. The test results showed that the reversible capacities of CNTs-1 electrode were 266 and 170 mAh g−1 at the current densities of 0.2 and 0.8 mA cm−2, respectively, which were almost twice those of CNTs-2 electrode. The larger voltage hysteresis in CNTs-2 electrode was not only related to the surface functional groups on CNTs, but also to the surface resistance of CNTs, which results in greater hindrance and higher overvoltage during lithium extraction from electrode. The kinetics properties of these two CNTs electrodes were compared by AC impedance measurements. It was found that, both the surface film and charge-transfer resistances of CNTs-1 were significantly lower than those of CNTs-2; the lithium diffusion coefficient (DLi) of both CNTs electrodes decreased as the drop of voltage, but the magnitude of the DLi variation of CNTs-1 electrode was smaller than that of CNTs-2 electrode, indicating CNTs-1 exhibited higher electrochemical activity and more favorable kinetic properties during charge and discharge process.  相似文献   

3.
《Ceramics International》2022,48(16):23334-23340
Titanium niobate prepared by traditional techniques has the shortcomings of low ion diffusion coefficient as well as poor electrical conductivity, which drastically reduce its applicability. In this work, we prepare carbon coated Ti2Nb10O29 hollow submicron ribbons (Ti2Nb10O29@C HSR) using a simple electrospinning procedure. As anode material for lithium-ion batteries (LIBs), it delivers a high charge capacity of 259.7 mAh g?1 at 1 C with low capacity loss of 0.013% in long-term cycles. Increased the current density to 5 C, Ti2Nb10O29@C HSR can maintain a reversible capacity of 189.9 mAh g?1, indicating its good rate performance. Additionally, this work uses in-situ X-ray diffraction (XRD) to provide an explanation for the lithium storage process in Ti2Nb10O29@C HSR, demonstrating the high reversibility during charge/discharge cycles. Therefore, Ti2Nb10O29@C HSR has outstanding cycle adaptability and structural reversibility to be a promising anode for LIBs.  相似文献   

4.
A novel hydrothermal synthesis was developed to prepare carbon-coated lithium vanadium phosphate (Li3V2(PO4)3) powders to be used as cathode material for Li-ion batteries. The structural, morphological and electrochemical properties were investigated by means of X-ray powder diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and constant current charge-discharge cycling. This material exhibits high initial discharge capacity of 178, 173 and 172 mAh g−1 at 0.1, 0.2 and 0.5 C between 3.0 and 4.8 V, respectively. Moreover, it displays good fast rate performance, which discharge capacities of 136, 132 and 127 mAh g−1 can be delivered after 100 cycles between 3.0 and 4.8 V versus Li at a different rate of 1, 2 and 5 C, respectively. For comparison, the electrochemical properties of carbon-coated lithium vanadium phosphate prepared by traditional solid-state reaction (SSR) method are also studied.  相似文献   

5.
A novel type of ZnO nanowires-modified multiwalled carbon nanotubes (MWCNTs) nanocomposite (ZnO-NWs/MWCNTs) has been prepared by a hydrothermal process. The ZnO-NWs/MWCNTs nanocomposite has a uniform surface distribution and large coverage of ZnO nanowires onto MWCNTs with 3D configuration, which was characterized by scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy methods were applied to investigate the electrochemical properties of ZnO-NWs/MWCNTs nanocomposite. Surprisingly, unlike the conventional n-type semiconducting ZnO nanowires grown on Ta substrate, the ZnO-NWs/MWCNTs nanocomposite exhibits excellent electron transfer capability and gives a pair of well-defined symmetric redox peaks towards ferricyanide probe. What's more, the ZnO-NWs/MWCNTs nanocomposite shows remarkable electrocatalytic activity (current response increased 4 folds at 0.3 V) towards H2O2 by comparing with bare MWCNTs. The ZnO-NWs/MWCNTs nanocomposite could find applications in novel biosensors and other electronic devices.  相似文献   

6.
Carbon nanotubes with large surface area and surface nitrogen and oxygen functional groups are prepared by carbonizing and activating of polyaniline nanotubes, which is synthesized by polymerization of aniline with the self-assembly method in aqueous media. The physicochemical properties of the carbon nanotubes are characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller, elemental analyses and X-ray photoelectron spectroscopy measurements. The surface area and pore diameter are 618.9 m2 g−1 and 3.10 nm. The electrochemical properties of the carbon nanotubes as anode materials in lithium ion batteries are evaluated. At a current density of 100 mA g−1, the activated carbon nanotube shows an enormously first discharge capacity of about 1370 mAh g−1 and a charge capacity of 907 mAh g−1. After 20 cycling tests, the activated carbon nanotube retains a reversible capacity of 728 mAh g−1. These indicate it may be a promising candidate for an anode material for lithium secondary batteries.  相似文献   

7.
《Ceramics International》2019,45(13):16195-16201
For electrospun silicon/carbon nanofiber composites, the surface precipitation of silicon nanoparticles can cause poor cycle stability. To solve this, a carbon-coated silicon/carbon nanofiber (Si/C@C) composite with a ‘sandwich’ structure is constructed by hydrothermal reaction of glucose and an electrospun silicon/carbon nanofiber, followed by high-temperature carbonization. The effects of the thickness of the carbon coating layer and calcining temperature on the electrochemical performance are studied. The results showed that carbon is uniformly and continuously coated on the surface of the composite fibers, which avoid direct exposure of precipitated silicon on the surface of the nanofibers to the electrolyte, reduce the occurrence of side reactions and is conducive to the stable formation of SEI films. At the same time, the carbon shell inhibit the volume expansion of silicon to a certain extent and improve the conductivity of the composites. Consequently, the obtained Si/C@C exhibit good rate performance and cycle stability. With the optimised carbon coating thickness and calcination temperature, the obtained electrodes deliver a reversible capacity of 1120 and 683 mA h g-1 at a current density of 0.1 and 2 A g-1 respectively, and a specific capacity of 602 mAh∙g-1 at a current density of 1 A g-1 after 100 cycles, a capacity retention rate of 80%. The facilely synthesised Si/C@C composite shows potential applications in high-capacity silicon-based anode materials.  相似文献   

8.
《Ceramics International》2020,46(13):20985-20992
The surface coating strategy provide a facile and effective means of improving the electrochemical behavior of lithium-ion batteries (LiBs) since it can prevent cathodes/anodes from contacting moisture and improve the thermal stability and cyclability of LiBs. However, to date, few studies have focused on carbon coating Ni-rich cathodes due to the moisture sensitivity of cathode materials. Herein, poly (vinylidene fluoride)/n-vinyl-2-pyrrolidinone (PVDF/NMP) solution was employed as the carbon source to coat LiNi0.8Mn0.1Co0.1O2 (NMC811) spheres for the first time. The coating process mainly includes two steps under moisture-free conditions: (1) wetting NMC811 using PVDF/NMP solution and (2) heat treatment of NMC811/PVDF under inert circumstances. The thickness of the obtained carbon layer can be controlled easily by adjusting the solution concentration. A 2.5 wt% PVDF containing solution can coat a carbon layer of ~4 nm on NMC811 spheres, which significantly improved the integral Li+ storage performance. The discharge capacity of the resulting carbon-coated NMC811 showed only a 1.26% decrease after 100 cycles at a 0.2 C rate, while pristine NMC811 lost 6.85% of its initial reversible capacity. This work highlights that carbon coating offers a facile yet effective approach to achieve high-performance cathodes materials for LIBs.  相似文献   

9.
A new nanocomposite of Ge/carbon nanotubes (n-Ge/CNTs) was reported by a facile precursor method through a pyrolysis technique. Among it, germanium nanoparticles are encapsulated with a thin layer of amorphous carbon, which benefits to keep a good electronic contact with carbon nanotubes. Germanium nanoparticles are mainly supported inside the carbon nanotubes, which can effectively buffer the volume changes of Germanium. The composite was an effectively mixed (Li+ and e) conducting network, which is vital to a quick Li insertion. The composite was shown to exhibit a reversible capacity of about 750 mAh g−1 (74.4 mA g−1) and an improved rate performance, compared with that of CNTs processed as the same condition. Our results demonstrated the composite to be a good active Li-storage material for Li batteries.  相似文献   

10.
Carbon-coated SnS2 nanoparticles were prepared by a simple solvothermal route at low temperature. A carbon coating with a thickness of about 5 nm was deposited on nano-sized SnS2 particles to serve as the anode in lithium-ion batteries. Both the nanostructure and the morphology of the SnS2 powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The coated samples were used as active anode materials for lithium-ion batteries, and their electrochemical properties were examined by constant current charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. The reversible capacity of the carbon-coated SnS2 after 50 cycles was 668 mAh/g, which was much higher than that of the uncoated SnS2 (293 mAh/g). The carbon-coated SnS2 also had a better rate capability than the uncoated SnS2 in the range of 0.008-1 C. The capacity retention of the carbon-coated SnS2 was improved due to its good conductivity and the effective buffer matrix that alleviated volume expansion during the charge-discharge process.  相似文献   

11.
《Ceramics International》2019,45(15):18743-18750
Due to their ultra-high theoretical capacity and low discharge potential, rich Sn-based materials are considered promising candidates for lithium ion battery (LIB) anodes; however, the development of SnOx electrodes is restricted by their low conductivity and severe volume change during repeated cycling. In this study, carbon matrix encapsulating heterostructured SnOx ultrafine nanoparticles (SnOx@C/rGO) were synthesized in situ through a facile solvent mixing, followed by thermal calcination. During the decomposition of the Sn-organic precursor, the sizes of the as-prepared SnOx nanoparticles were strictly controlled to 5–10 nm; they were intimately wrapped by the in-situ formation of ultrathin carbon layers, which prevented the agglomeration of nanograins. Furthermore, the SnOx@C nanoparticles were evenly anchored on the surface of reduced graphene oxide (rGO) to construct a highly conductive carbon framework. It is notable that the carbon matrix prepared in situ can accommodate the volumetric change of SnOx and facilitate the transport of Li+ ions during continuous cycling. Benefiting from the synergistic effect between the SnOx nanoparticles and carbon matrix prepared in situ, the heterostructured SnOx@C/rGO will confer improved structural stability and reaction kinetics for lithium storage. It delivers a stable reversible discharge capacity of 1092.2 mAh g−1 at a current rate of 0.1 A g−1, and enhanced cycling retention with a capacity of 447.8 mAh g−1 after 1200 cycles at a current rate of 5.0 A g−1. This strategy provides a rational avenue to design oxide anodes with efficient hierarchical structure for LIB development.  相似文献   

12.
《Ceramics International》2019,45(12):14775-14782
In this article, we have reported a one-step scalable synthesis of MgCo2O4 nanostructures as efficient anode material for Li-ion batteries and investigated the role of post-synthesis calcination temperature (400, 600 and 800 °C) on its physiochemical properties and electrochemical performances. The XRD pattern of the calcinated sample at 400 °C (MC 400) indicates a pure phase of MgCo2O4. However, on increasing the calcination temperature to 600 °C (MC 600), an additional phase corresponding to MgO was detected and the corresponding XRD peak intensity further increased on increasing the calcination temperature to 800 °C (MC 800 °C). This was accompanied by a morphological transformation from flake and rod-like nanostructures, to an agglomerated dense flake-like morphology. Electrochemical studies revealed that the calcination temperature plays an important role in determining the electrochemical performance of the MgCo2O4 as anode material. In a half cell, the MC 600 showed the best electrochemical performance with high discharge capacity of 980 mA h g−1 (2nd discharge at 60 mA g−1) and a reversible discharge capacity of 886 mA h g−1 at the end of 50 cycles with high coulombic efficiency of 98%. Long term stability was carried out at 0.5C which showed a capacity retention of 358 mA h g−1 at the end of 500 cycles. The superior electrochemical performance of the MC600 can be attributed to the presence of the small amount of MgO, which is believed to provide the anode materials better structural stability during cycling. The claim was further supported by ex-situ TEM analysis of the anode material of a cycled cell (50 cycles).  相似文献   

13.
Manganese monoxide (MnO) nanowire@reduced graphene oxide (rGO) nanocomposites are synthesized using a simple hydrothermal method combined with a calcination process. The structural and morphological characterization of the composites indicates that the MnO nanowires homogeneously anchor on both sides of the cross-linked rGO. The nanocomposites exhibit a high surface area of 126.5?m2 g?1. When employed as an anode material for lithium-ion batteries, the nanocomposites exhibit a reversible capacity of 1195 mAh g?1 at a current density of 0.1?A?g?1, with a high charge-discharge efficiency of 99.2% after 150 cycles. The three-dimensional architecture of the present materials exhibits high porosity and electron conductivity, significantly shortening the diffusion path of lithium ions and accelerating their reaction with the electrolyte, which greatly improves the lithium-ion storage properties. These excellent electrochemical performances make the composite a promising electrode material for lithium-ion batteries.  相似文献   

14.
《Ceramics International》2020,46(9):12965-12974
“Zero-strain” Li4Ti5O12 has become one of the most promising anode materials for lithium-ion battery but its low electronic and ionic conductivity lead to the poor rate capability. Herein, the high-rate performance and the cycling stability of Li4Ti5O12 have been largely enhanced by replacing Li and Ti with a little amount of Mg and La, respectively. The synergistic modulation mechanism of Mg and La co-doping on the crystal/electronic structure and electrochemical performances has been unveiled. Firstly, Mg and La co-doping enlarges the lattice parameters, unit cell volume and Li1–O bond. These facilitate the lithium-ion migration and enhance the rate capability. Secondly, Ti–O bond is shortened which enhances the structure stability and cyclic performance. Thirdly, the first-principles calculations further confirm that Mg/La co-doping modulates the electronic density of states and decreases the Li+ migration barrier. The polarization and charge transfer impedance are effectively alleviated. Moreover, the diffusion coefficient of lithium ions is further improved because of the reduction of much more Ti3+. At 10C, it delivers a discharge capacity of 107.8mAh/g after 500cyles which reserves 92.2% of the initial capacity. This study provides some insights into optimizing the electrochemical performances of Li4Ti5O12 by tuning the crystal and electronic structure with lattice doping.  相似文献   

15.
Cu2Nb37O87 exhibits excellent electrochemical properties, high theoretical capacity (401 mAh g?1), safe working voltage (~1.7 V) and outstanding rate performance for lithium-ion batteries. However, poor electrical conductivity inhibits its further development. In this study, Cu2Nb37O87@C nano-wires are prepared by combining electrospinning and carbon-coating techniques to mitigate this issue, which breaks through the barrier of low conductivity, improves the ion diffusion rate and relieves the change of crystal volume. Besides, the sample is tested by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy and most importantly, the mechanism of lithium-ion storage is explored by an in-situ X-ray diffraction analysis. Moreover, according to a sequence of electrochemical tests, it is clarified that the electronic conductivity and electrochemical activity of Cu2Nb37O87 are enhanced significantly. All these are inseparable from the synergistic effect of the nano-crystallisation and carbon coating. Therefore, nano-structures and surface cladding provide effective tactics to construct effective ion-migration interfaces and enhance conductivity for the further study of Cu2Nb37O87 and other electrode materials.  相似文献   

16.
Sodium-substituted LiMnPO4/C/reduced graphene oxide (LNMP@rGO) was synthesized in this study via freeze drying and carbon thermal reduction method with graphene oxide as carbon source. Sodium ion doping is optimized and rGO effects are evaluated by XRD, SEM, TEM, BET, Raman, and electrochemical performance measurements. Well-distributed nanoparticles with average size of ~50?nm are evenly distributed on the surface or intercalation between rGO layers, resulting in a porous ion/electronic conductive network. Compared to 122.3?mA?h?g?1 in unmodified LNMP, the best LNMP@rGO (20?mg rGO) exhibits an excellent initial discharge capacity of 150.4?mA?h?g?1 at 0.05?C at 122.9% of the initial capacity. The capacity retention rate is 95.8% of the initial capacity after 100 cycles at 1?C. Capacity of 101.2?mA?h?g?1 is preserved even at rates as high as 10?C.  相似文献   

17.
《Ceramics International》2022,48(8):11257-11264
Silicon oxides (SiOX) based materials with great specific capacity and suitable working potential have caused widespread concern. During alloying process, the volume expansion of SiOX is approximately 200%, which limits its practical application for lithium-ion batteries (LIBs). For the purpose of surmounting the shortcomings of large volume change, a lot of efforts have been made, such as regulating the structure and morphology of active materials, incorporating with other conductive materials, and matching the suitable battery systems. However, to date, the volume expansion of SiOX anode in the cycle process cannot be absolutely avoided due to its intrinsic characteristics. In this work, these seeming drawback is creatively exploited to increase the electrochemical performance of SiOX materials. PbZr0.52Ti0.48O3 (PZT) is taken advantage as functional addition agent, which is based on piezoelectric effect elicited by volume expansion of SiOX. Specifically, the large volume change of SiOX-C could be transmitted to PZT particles, thus resulting in a polarization process. Then the piezoelectric potential is generated, so as to promote Li + mobility. SiOX-C/PZT was synthesized via a sol-gel method and high energy ball-milling procedure. Accordingly, SiOX-C/PZT anode exhibits excellent the superior cycling capability, it retains 570 mA h g-1 after 200 cycles at 400 mA g-1. Besides, it also has stable long-cycling life (430 mA h g-1 after 500 cycles at 500 mA g-1 with a retention of 75%). The relevant results demonstrate that PZT piezoelectric material can favorably increase the electrochemical property of SiOX anode materials.  相似文献   

18.
Economy and efficiency are two important indexes of lithium-ion batteries (LIBs) materials. In this work, nitrogen doped hollow porous coaxial carbon fiber/Co3O4 composite (N-PHCCF/Co3O4) is fabricated using the fibers of waste bamboo leaves as the template and carbon resource by soaking and thermal treatment, respectively. The N-PHCCF/Co3O4 exhibits an outstanding electrochemical performance as anode material for lithium ion batteries, due to the nitrogen doping, coaxial configuration and porous structure. Specifically, it delivers a high discharge reversible specific capacity of 887 mA h g?1 after 100 cycles at the current density of 100 mA g?1. Furthermore a high capability of 415 mA h g?1 even at 1 A g?1 is exhibited. Most impressively, the whole process is facile and scalable,exhibiting recycling of resource and turning waste into treasure in an eco-friendly way.  相似文献   

19.
In this work, SiO_2 nanoplates with opened macroporous structure on carbon layer(C-mSiO_2) have been obtained by dissolving and subsequent regrowing the outer solid SiO_2 layer of the aerosol-based C-SiO_2 double-shell hollow spheres. Subsequently, triple-shell C-mSiO_2-C hollow spheres were successfully prepared after coating the Cm SiO_2 templates by the carbon layer from the carbonization of sucrose. When being applied as the anode material for lithium-ion batteries, the C-mSiO_2-C triple-shell hollow spheres deliver a high capacity of 501 mA ·h·g~(-1) after100 cycles at 500 m A·g~(-1)(based on the total mass of silica and the two carbon shells), which is higher than those of C-mSiO-12(391 m A·h·g~(-1)) spheres with an outer porous SiO_2 layer, C-SiO_2-C(370 m A·h·g) hollow spheres with a middle solid SiO_2 layer, and C-SiO_2(319.8 m A·h·g~(-1)) spheres with an outer solid SiO_2 layer. In addition,the battery still delivers a high capacity of 403 m A·h·g~(-1) at a current density of 1000 m A·g~(-1) after 400 cycles.The good electrochemical performance can be attributed to the high surface area(246.7 m~2·g~(-1)) and pore volume(0.441 cm~3·g~(-1)) of the anode materials, as well as the unique structure of the outer and inner carbon layer which not only enhances electrical conductivity, structural stability, but buffers volume change of the intermediate SiO_2 layer during repeated charge–discharge processes. Furthermore, the SiO_2 nanoplates with opened macroporous structure facilitate the electrolyte transport and electrochemical reaction.  相似文献   

20.
SnO2 nanosheets were synthesized using microwave hydrothermal method without using a surfactant and organic solvents. Formation of pure nanocrystalline rutile phase of SnO2 sample was confirmed by X-ray diffraction (XRD) results and the average crystallite size of SnO2 sample calculated using Scherrer's formula and XRD data is found to be 6 nm. HR-TEM, SAED and EDX results showed the formation of agglomerated nanosize sheets like morphology with high porous structured SnO2 powder. Further, the formation of high porous structured SnO2 powder was confirmed from BET surface area results (59.28 m2 g?1). The electrochemical performance of the lithium-ion battery made up of SnO2 nanosheets, as an anode, was tested through the cyclic voltammetry and galvanostatic charge-discharge measurements. The galvanostatic charge-discharge results of the lithium-ion battery showed good discharge capacity of 257.8 mAh g?1 after 50 cycles at a current density of 100 mA g?1. The improved electrochemical properties may be due to the formation of a unique nanosize sheets type morphology with high porous structured SnO2 powder. High porous structured nanosize sheets type morphology of SnO2 can help to reduce the diffusion length and sustain the volume changes during the charging-discharging process.Hence, high porous structured nanosize sheets morphology of SnO2 prepared using the microwave hydrothermal method without using a surfactant and organic solvents can be a better anode material for lithium ion battery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号