首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(5):5610-5622
A simple with cost-effective method in the production and fabrication of graphene-based rubber nanocomposites as electrode materials is still remain a global challenge. In this work, we proposed one- and two-step approaches to fabricate an exfoliated graphene oxide (GO) as nanofiller in three different types of rubber latex polymer, namely, low ammonia natural rubber latex (NRL), radiation vulcanized NRL (RVNRL), and epoxy NRL 25 (ENRL 25). The electrical conductivity and capacitive behavior of nanocomposite samples were investigated under a four-point probe and cyclic voltammetry measurements, respectively. Meanwhile, the morphological properties were observed using field emission scanning electron microscopy, energy dispersive X-ray, optical polarization microscope, high-resolution transmission electron microscopy, Fourier-transform infrared spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The thermal stabilities of the nanocomposites were also investigated by thermogravimetric analysis. Among all, the GO/RVNRL polymer nanocomposite samples performed a better homogeneity with an improved electrical conductivity (~8.6 × 10−4 Scm−1) as compared with the GO/ENRL 25 (~3.1 × 10−4 Scm−1) and GO/NRL (~2.6 × 10−4 Scm−1) polymer nanocomposite samples. In addition, the GO/RVNRL polymer nanocomposite electrodes showed acceptable specific capacitance (5 Fg-1). The successfully fabricated conductive GO-based rubber nanocomposites are suitable for new supercapacitor electrodes.  相似文献   

2.
La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is a mixed ionic electronic conductor with excellent surface catalytic activity for oxygen reduction. This work demonstrated that introduction of pure oxygen ion conductor to LSCF particles can significantly influence in-plane electronic conduction at the surface of LSCF-samarium-doped ceria (SDC) composite. The composite functional layer was prepared by mixing 50?wt% SDC particles with LSCF particles obtained from glycine–nitrate process. Homogeneous LSCF-SDC composite layer deposited by screen printing on an SDC substrate has been studied with and without LSCF current-collecting layer (CCL). The microstructural, optical, Raman, mechanical and electrical properties, and interfacial polarization resistance (Rp) of the prepared powders were evaluated. Results revealed that addition of oxygen ion conductor SDC exerted negligible effect on the phase structure and specific surface area but significantly influenced the band gap, oxygen vacancies, and electrical conductivity of LSCF. SDC addition significantly increased area specific resistance (ASR) of LSCF from 0.138?Ω?cm2 to 0.481?Ω?cm2 at 800?°C, thereby blocking the conduction path among LSCF particles. Rp value of LSCF-SDC composite can be improved by more than six times by enlarging the in-plane electronic conduction with thin CCL. Electrochemical measurement revealed that LSCF CCL reduced the Rp value, resulting in the lowest ASR of 0.087?Ω?cm2 at 800?°C for the LSCF–SDC composite.  相似文献   

3.
《Ceramics International》2016,42(10):11568-11573
Thermoelectric properties of carbon fiber reinforced cement composites (CFRCs) have attracted relevant interest in recent years, due to their fascinating ability for harvesting ambient energy in urban areas and roads, and to the widespread use of cement-based materials in modern society. The enhanced effect of the thin pyrolytic carbon layer (formed at the carbon fiber/cement interface) on transport and thermoelectric properties of CFRCs has been studied. It has been demonstrated that it can enhance the electrical conduction and Seebeck coefficient of CFRCs greatly, resulting in higher power factor 2.08 µW m−1 K−2 and higher thermoelectric figure of merit 3.11×10−3, compared to those reported in the literature and comparable to oxide thermoelectric materials. All CFRCs with pyrolytic carbon layer, exhibit typical semiconductor behavior with activation energy of electrical conduction of 0.228-0.407 eV together with a high Seebeck coefficient. The calculation through Mott’s formula indicates the charge carrier density of CFRCs (1014–1016 cm−3) to be much smaller than that of typical thermoelectric materials and to increase with the carbon layer thickness. CFRCs thermal conductivity is dominated by phonon thermal conductivity, which is kept at a low level by high density of micro/nano-sized defects in the cement matrix that scatter phonons and shorten their mean free path. The appropriate carrier density and mobility induced by the amorphous structure of pyrolytic carbon is primarily responsible for the high thermoelectric figure of merit.  相似文献   

4.
S.R. Dhakate  O.P. Bahl 《Carbon》2003,41(6):1193-1203
The present investigation describes the quantitative measurement of surface functional groups present on commercially available different PAN based carbon fibers, their effect on the development of interface with resol-type phenol formaldehyde resin matrix and its effect on the physico-mechanical properties of carbon-carbon composites at various stages of heat treatment. An ESCA study of the carbon fibers has revealed that high strength (ST-3) carbon fibers possess almost 10% reactive functional groups as compared to 5.5 and 4.5% in case of intermediate modulus (IM-500) and high modulus (HM-45) carbon fibers, respectively. As a result, ST-3 carbon fibers are in a position to make strong interactions with phenolic resin matrix and HM-45 carbon fibers make weak interactions, while IM-500 carbon fibers make intermediate interactions. This observation is also confirmed from the pyrolysis data (volume shrinkage) of the composites. Bulk density and kerosene density more or less increase in all the composites with heat treatment up to 2600 °C. It is further observed that bulk density is minimum and kerosene density is maximum upon heat treatment at 2600 °C in case of ST-3 based composites compared to HM-45 and IM-500 composites. It has been found for the first time that the deflection temperature (temperature at which the properties of the material start to decrease or increase) of flexural strength as well as interlaminar shear strength is different for the three composites (A, B and C) and is determined by the severity of interactions established at the polymer stage. Above this temperature, flexural strength and interlaminar shear strength increase in all the composites up to 2600 °C. The maximum value of flexural strength at 2600 °C is obtained for HM-45 composites and that of ILSS for ST-3 composites.  相似文献   

5.
《Ceramics International》2015,41(8):9488-9495
The ceramic/polymer composites based on epoxy-terminated dimethylsiloxane (ETDS) and boron nitride (BN) were prepared for use as thermal interface materials (TIMs). 250 µm-sized BN was used as a filler to achieve high-thermal-conductivity composites. To improve the interfacial adhesion between the BN particles and the ETDS matrix, the surface of BN particles were modified with silica via the sol–gel method with tetraethyl orthosilicate (TEOS). The interfacial adhesion properties of the composites were determined by the surface free energy of the particles using a contact angle test. The surface-modified BN/ETDS composites exhibited thermal conductivities ranging from 0.2 W/m K to 3.1 W/m K, exceeding those of raw BN/ETDS composites at the same weight fractions. Agari׳s model was used to analyze the measured thermal conductivity as a function of the SiO2-BN concentration. Moreover, the storage modulus of the BN/ETDS composites was found to increase with surface modification of the BN particles.  相似文献   

6.
The electrical properties of carbon black-filled polymers are briefly reviewed. The published experimental findings are compared to the predictions of current models related to percolation theory. It is deduced that, although this theory applies qualitatively to most of the observed behaviors, it fails to give account quantitatively of many others, like for example the location of the well-known conductivity transition. One concludes that basically one may suspect that the model of mesotructure that is involved in this approach is not fully appropriate. New results obtained by means of a novel technique allowing a powerful investigation of the electrical connection among the conducting particles throughout the heterogeneous material are reported. A preliminary conclusion is that the mesostructure that can be deduced is in qualitative agreement with the percolation model.  相似文献   

7.
A novel, easy and cost-effective way, infiltration and pyrolysis of phenolic resin solution, was exploited to prepare pyrolytic carbon (PyC) interlayers for carbon fiber/silicon carbide (Cf/SiC) mini-composites. X-ray photoelectron spectroscopy, dynamic contact angle measurement and scanning electron microscope were carried out to characterize chemical structure of carbon fibers (CFs), wetting properties between CFs and phenolic resin solution and microstructure of CFs and their composites, respectively. Remarkably, SEM results showed regulation of uniformity and thicknesses of PyC interlayer could be achieved through controlling the concentration of phenolic resin solution and oxidation condition of CFs. When CFs were treated by 10?min' oxidation with 40?mg/L ozone followed by dip-coating with 4?wt% phenolic solution, uniform PyC interlayer with approximately 120?nm were prepared on CFs. The corresponding Cf/SiC specimens had the largest increase in tensile strength and work of fracture with the improvement of 26.2% and 71.6% from the PyC-free case.  相似文献   

8.
Jong Kyoo Park  Tae Jin Kang 《Carbon》2002,40(12):2125-2134
The thermal and ablative properties of phenol formaldehyde resin (PF) composites reinforced with carbon fibers heat-treated at low temperature have been investigated. Low temperature carbon fibers (LTCF) were obtained by a continuous carbonization process from stabilized PAN fibers at 1100 °C. The properties of LTCF reinforced PF (LTCF-PF) composites are compared with those of high temperature carbon fiber (HTCF) reinforced PF (HTCF-PF) composites. The thermal conductivity of the LTCF-PF composite is lower than that of HTCF-PF composite by about 35 and 10% along the directions parallel and perpendicular to the laminar plane, respectively. It was found from the ablation test using an arc plasma touch flame that the erosion rate is higher by about 30% in comparison with HTCF-PF composite. The result suggests that use of LTCFs as reinforcement in a composite may improve the thermal insulation of the composite but decrease the ablative resistance.  相似文献   

9.
High density carbon nanofibers (CNFs) reinforced aluminum nitride (AlN) composites were successfully fabricated by plasma activated sintering (PAS) method. The effects of CNFs on the microstructure, mechanical and electrical properties of the AlN composites were investigated. The experimental results showed that the grain growth of AlN was significantly inhibited by the CNFs. With 2 wt.% CNFs added into the composites, the fracture toughness and flexural strength were increased, respectively to 5.03 MPa m1/2 and 354 MPa, which were 20.9% and 13.4% higher than those of monolithic AlN. The main toughening mechanisms were CNFs pullout and bridging, and the main reason for the improvements in strength should be the fine-grain-size effect caused by the CNFs. The DC conductivity of the composites was effectively enhanced through the addition of CNFs, and showed a typical percolation behavior with a very low percolation threshold at the CNFs content of about 0.93 wt.% (1.51 vol.%).  相似文献   

10.
The electrical conductivity of oxidized multiwalled carbon nanotubes (MWNT)/epoxy composites is investigated with respect to the chemical treatment of the MWNT. The oxidation is carried out by refluxing the as-received MWNT in concentrated HNO3 and H2O2/NH4OH solutions, respectively, under several different treatment conditions. The oxidized MWNT are negatively charged and functionalized with carboxylic groups by both solutions. The MWNT oxidized under severe conditions are well purified, but their crystalline structures are partially damaged. It is recognized that the damage to the MWNT has considerable influence on the electrical properties of the MWNT composites, causing the electrical conductivity to be lowered at a low content of MWNT and the percolation threshold to be raised. The MWNT oxidized by the mixture of H2O2 and NH4OH solution provides epoxy composites with a higher conductivity than those produced with the MWNT oxidized by nitric acid over the whole range of MWNT, independently of the oxidation conditions.  相似文献   

11.
《Ceramics International》2015,41(6):7381-7386
The aim of this work was to compare fatigue behavior and oxidation resistance of pitch-derived CC (carbon) composite with CC/ceramic (carbon/ceramic) composites obtained by impregnation of CC composite with polysiloxane-based preceram and their subsequent heat treatment. Two types of CC/ceramic composites were studied; CC/SiCO composite obtained at 1000 °C, and CC/SiC composite obtained at 1700 °C. Both types of composites show much better fatigue mechanical performance in comparison to pure CC composite. CC/SiCO composite had 3 times better fatigue properties, and CC/SiC composite 4.5 times better fatigue properties than the reference CC composite. After a fatigue test composites partially retain their mechanical properties, and normalized residual modulus in the direction perpendicular to laminates exceeds 50% for CC and CC/SiCO composites. In the other directions normalized residual modulus is higher than 80% for all composites. Oxidative tests led at 600 °C in air atmosphere indicated oxidation resistance of CC/SiC composites.  相似文献   

12.
《Ceramics International》2017,43(2):2170-2173
HfB2-x vol%CNTs (x=0, 5, 10, and 15) composites are prepared by spark plasma sintering. The influence of CNTs content and sintering temperature on densification, microstructure and mechanical properties is studied. Compared with pure HfB2 ceramic, the sinterability of HfB2-CNTs composites is remarkably improved by the addition of CNTs. Appropriate addition of CNTs (10 vol%) and sintering temperature (1800 °C) can achieve the highest mechanical properties: the hardness, flexural strength and fracture toughness are measured to be 21.8±0.5 GPa, 894±60 MPa, and 7.8±0.2 MPa m1/2, respectively. This is contributed to the optimal combination of the relative density, grain size and the dispersion of CNTs. The crack deflection, CNTs debonding and pull-out are observed and supposed to exhaust more fracture energy during the fracture process.  相似文献   

13.
Composite materials based on undoped conjugated polymers and conductive filler were synthesized and their electrophysical and electrochemical properties were investigated. Conjugated polymers such as polyaniline (PANI), polyacetylene (PA) and typical polymer dielectric, polypropylene (PP) were used as matrices. Graphite and single-walled nanotubes were used as conductive fillers. The investigation of the dependencies of conductivity on filler concentration show that in contrast to PP and PANI, PA becomes conductive due to injected charge carriers from filler particles. This conclusion is supported by investigated dependencies of composite conductivity on temperature and time during aging and on cyclic voltammetry data. It was shown that a conjugated polymer matrix allows composite materials with new electrophysical and electrochemical properties to be produced.  相似文献   

14.
Magnetic MnFe2O4 nanopowders were synthesized by an original solvothermal method in the absence and in the presence of tetra-n-butylammonium bromide (TBAB) and Tween 80 (TW) as surfactants. Manganese ferrite/polyaniline (PANI) hybrid materials were synthesized by in situ polymerization of aniline on the surface of MnFe2O4 using ammonium persulfate as oxidant. The purpose of the study was to investigate the influence of the two surfactants on the properties of the MnFe2O4 powders and of their composites with PANI. The specific surface area, the cumulative surface area of pores and the cumulative volume of pores are influenced by the nature of surfactant in case of MnFe2O4 powders and are higher by comparison to those of the MnFe2O4/PANI hybrid materials. The values of saturation magnetization in case of MnFe2O4 powders are higher than those of the hybrid materials and are not influenced by the surfactant nature. These features revealed that MnFe2O4 powders can be efficiently used as adsorbents for the purification of wastewaters. The values of the electrical conductivity of the composites exhibit a significant increase in comparison to the MnFe2O4 powders and depend on the surfactant nature. The highest value of electrical conductivity was achieved by the composite obtained using Tween 80 as surfactant (σDC = 54.5·10?5S?m?1) which was close to that of PANI (σDC = 61.2·10?5 S?m?1). The fact that the magnetic and electric properties of the synthesized MnFe2O4/PANI composites can be changed by design, demonstrate the high potential of these materials to be used in magneto-electric applications.  相似文献   

15.
Federico Smeacetto 《Carbon》2003,41(11):2105-2111
This work proposes a simple and low cost method to deposit an effective multilayer protective coating on carbon-carbon composites (C/C). The first layer is made of molybdenum disilicide particles in a barium boron aluminosilicate glass (SABB); the second (external) layer is made of yttrium oxide modified SABB. A study of the reactions between the yttrium oxide and the SABB glass is presented. The coated C/C were submitted to thermal cycling or thermal aging tests up to 1300 °C in air. Weight losses were less than 0.5% in 50 h of thermal cycling and less then 1% in 150 h of thermal aging.  相似文献   

16.
《Ceramics International》2016,42(7):8597-8603
This paper discusses the influence of nickel–phosphorus coated graphene (Gn–Ni–P) and uncoated graphene (Gn) addition to an alumina matrix and its impact on the mechanical properties of obtained composites. The composites are prepared via powder processing and consolidated using the Spark Plasma Sintering (SPS) method. The effects of the addition of coated graphene and coating thickness on mechanical properties were evaluated. Physical properties such as relative density, hardness and fracture toughness were analyzed. Significant improvement of the fracture toughness (60%) for the composites with 2 vol% Gn–Ni–P compared to reference sample was observed. Moreover, 35% higher KIC was noticed for Gn–Ni–P reinforced composites than for Al2O3–Gn.  相似文献   

17.
18.
Monoclinic celsian derived from an innovative route, i.e. cation exchanged zeolites heat-treated at low temperature, was added at different contents (10, 20, 30 wt%) to a glass matrix, in order to improve its mechanical and electrical performances. The effect of the celsian reinforcement was evaluated by testing several properties of the composite materials, such as the elastic modulus, abrasion resistance, flexural strength and electrical insulation. The results so far obtained suggest that the addition of the monoclinic celsian to the glass matrix may produce low-cost particulate composites with interesting technological properties.  相似文献   

19.
Y BinC Xu  D ZhuM Matsuo 《Carbon》2002,40(2):195-199
Composite materials based on low molecular weight polyethylene (LMWPE), ultra-high molecular weight polyethylene (UHMWPE) and carbon black (CB) particles were prepared by gelation/crystallization from solution. The positive temperature coefficient (PTC) intensity for the 90/10 (LMWPE/UHMWPE) composition exceeded five orders of magnitude for the specimens heat-treated at a suitable temperature, which was almost equal to that observed with LMWPE-CB blends prepared by a kneading method. In comparison with LMWPE-CB blends, much promoted reproducibility of PTC effect and inhibition of the negative temperature coefficient (NTC) effect were achieved.  相似文献   

20.
The effects of nitride (AlN, BN, TiN) addition on the electrical, thermal, and mechanical properties of porous SiC-nitride composites were investigated within a porosity range of 40–74 %. The electrical conductivity was predominantly controlled by chemistry rather than porosity, whereas the thermal conductivity was more susceptible to changes in porosity. These results suggest that the electrical conductivity of porous SiC ceramics can be tuned independently from the thermal conductivity by nitride addition. At constant thermal conductivity (∼5 Wm−1 K-1), the electrical conductivity of the baseline specimen (6.3 × 10-3 Ω-1 cm-1) could be: (1) increased by an order of magnitude (8.3 × 10-2 Ω-1 cm-1) by adding AlN and (2) decreased by an order of magnitude (7.0 × 10-4 Ω-1 cm-1) by adding BN. Typical electrical conductivity and thermal conductivity values of the porous SiC-10 vol% TiN composite were 5.3 × 10-1 Ω-1 cm-1 and ∼14.0 Wm−1 K-1, respectively, at 51 % porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号