首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coal fly ash, a solid state waste massively produced from coal combustion, is considered to be highly hazardous to the environment due to its persistently toxic trace elements. High-value added waste recycling is a promising technique to address this issue. In this work, a waste-to-resource strategy is proposed for design of highly porous whisker-structured mullite ceramic membranes derived from waste coal fly ash and Al(OH)3 as raw materials and MoO3 as a single sintering additive. These were characterized in terms of their dynamic sintering behavior, shrinkage, bulk density, porosity, phase evolution, microstructure, pore size distribution, N2 permeation flux, and mechanical strength. Addition of molybdenum trioxide effectively inhibited the sintering densification of membranes while at the same time forming a metastable low viscosity liquid at lower temperatures. This enables formation of a novel and more highly porous whisker-interlocked structure and accelerates the growth of mullite whiskers with controllable morphologies. Without degradation of mechanical properties, the open porosity increased significantly from 41.65 ± 0.13% to 58.14 ± 0.15% with increasing MoO3 content from 0 to 20 wt.% without any pore-forming agent, while shrinkage and pore size decreased. The method proposed in this study is expected not only to give a new and facile insight for high-value added recycling of waste coal fly ash but also to fabricate low-cost high performance ceramic membranes with novel structures for further environmental applications.  相似文献   

2.
Mullite ceramics with hollow whisker structure have been synthesized firstly through ordinary sintering process. The effects of Bi2O3 and processing, on mullitization behavior and morphology development of mullite ceramics, derived from the mechanochemically activated mixture of Al2O3 and SiO2, were investigated in this paper. When the content of Bi2O3 was less than 10?mol%, the mullite grains show a short rod-like morphology, without the formation of whisker. As the content of Bi2O3 was increased to more than 10?mol%, the formation temperature of mullite was decreased from 1400?°C to 1100?°C. After sintering at 1400?°C, well-developed mullite whiskers with hollow structure were formed. The formation process and growth mechanism of hollow structural whiskers in mullite ceramic doped with high content of Bi2O3 were discussed in detail.  相似文献   

3.
Mullite whiskers are potential candidates for improving the mechanical and thermal properties of ceramic, glass, and composite material. In this work, well‐developed whisker‐shaped mullite has been produced by adding tribasic calcium phosphate (Ca3(PO4)2) into kaolin before calcining in air. In the raw kaolin, rod‐like mullite crystal of ~0.5‐1.0 μm length and ~0.05‐0.2 μm diameter formed at 1350°C, and mullite whiskers were not be observed; however, by doping 6 wt% Ca3(PO4)2 into kaolin, mullite whiskers of ~5.5 μm length and ~0.05‐0.10 μm diameter grew at 1250°C. The formation of high aspect ratio of mullite whiskers can probably be explained by the synergistic effect of P2O5 and CaO, resulting in the formation of liquid phase with a relatively higher content of Si and a lower viscosity at low temperature of 1250°C, which facilitates the growth of mullite displaying acicular morphology. The results are of interest in producing high aspect ratio of mullite whiskers from kaolin at reduced calcination temperatures.  相似文献   

4.
《Ceramics International》2016,42(15):17179-17184
Mullite-whisker-reinforced anorthite-mullite-corundum porous ceramics were prepared from construction waste and Al2O3 powder by adding AlF3 and MoO3 as the additive and crystallization catalyst, respectively. The effects of AlF3 and MoO3 content on the properties of mullite whiskers, such as open porosity, mechanical properties, pore size distribution, microstructure and phase structure, were investigated in detail. The results showed that the morphology of the mullite whiskers and properties of the porous ceramics were greatly influenced by the AlF3 and MoO3 content. The specimen obtained by co-adding 12 wt% AlF3 and 3 wt% MoO3, and sintering at 1350 °C for 1 h, exhibited excellent properties, including an open porosity of 67.4±0.5% and biaxial flexural strength of 24.0±0.8 MPa. The mullite whiskers were uniformly distributed; the whiskers had a diameter of 0.05–0.5 µm, length of 8–10 µm, and aspect ratios (length to diameter ratio) of 20–30 on average.  相似文献   

5.
《Ceramics International》2023,49(6):9442-9451
The increasing demand for mullite whisker-reinforced, toughened ceramic materials and mullite raw materials that meet industrial requirements has prompted the search for new and alternative sources, as well as effective technologies to obtain the target products. In this work, mullite whiskers of high purity were synthesized by a vapor-liquid–solid (V-L-S) process using industrial waste silica-alumina gel and Al2(SO4)3·18H2O as raw materials, with AlF3·3H2O and Na2SO4 as additives. The effects of sintering temperatures on the mullitization reactions and mullite morphology were investigated by XRD, TG-DTA, SEM and so forth. The results suggest that the introduction of AlF3·3H2O and Na2SO4 alters the mullitization reaction path, which leads to an initial mullitization reaction temperature of 720 °C. The SEM results demonstrate that mullite whiskers transformed from secondary growth to anisotropic growth when the sintering temperature was increased from 720 °C to 825 °C. By analyzing the experimental results, the mechanism of AlF3·3H2O-assisted growth of mullite whiskers with Na2SO4 as the liquid phase template is proposed based on the “dissolution-precipitation” process. Herein, a novel and feasible solution for the recycling of silica-rich industrial waste is proposed, which offers new and simple insights into the high value-added recycling of industrial waste, which provides new ideas for the actual mass production of mullite whiskers.  相似文献   

6.
Porous mullite ceramics with ultra-low shrinkage and high porosity were prepared by solid state reaction between MoO3 and mullite precursor powders which were synthesized from tetraethylorthosilicate and aluminium nitrate nonahydrate via sol-gel methods. The synthetic process of mullite precursor powder and effects of MoO3 amount on the phase composition, microstructure, physical properties such as firing shrinkage, open porosity, bending strength, water absorption and bulk density of porous mullite ceramics were investigated. The results indicated that the addition of MoO3 not only lowered the mullite forming temperature from 985.4 to 853.3 °C, but also restrained densification behavior of samples due to the formation of mullite and Al2O3–MoO3 solid solution, besides, MoO3 also improves the formability, open porosity and bending strength of samples. The optimal amounts of MoO3 is 8 wt%, and the resultant samples exhibit outstanding properties, including a low shrinkage rate of 1.86 ± 0.07%, an open porosity of 61.91 ± 0.16% and a bending strength of 9.35 ± 1.11 MPa.  相似文献   

7.
Porous mullite ceramics were fabricated by the transient liquid phase diffusion process, using quartz and fly-ash floating bead (FABA) particles and corundum fines as starting materials. The effects of sintering temperatures on the evolution of phase composition and microstructure, linear shrinkage, porosity and compressive strength of ceramics were investigated. It is found that a large amount of quartz and FABA particles can be transformed into SiO2-rich liquid phase during the sintering process, and the liquid phase is transient in the Al2O3-SiO2 system, which can accelerate the mullitization rate and promote the growth of mullite grains. A large number of closed pores in the mullite ceramics are formed due to the transient liquid phase diffusion at elevated temperatures. The porous mullite ceramics with high closed porosity (about 30%) and excellent compressive strength (maximum 105?MPa) have been obtained after fried at 1700?°C.  相似文献   

8.
《Ceramics International》2016,42(5):6080-6087
In this work, anorthite–mullite–corundum porous ceramics were prepared from construction waste and Al2O3 powders by adding AlF3 and MoO3 as mineralizer and crystallization catalyst, respectively. The effects of the sintering temperature and time on open porosity, mechanical properties, pore size distribution, microstructure, and phase composition were characterized in detail. The results showed that the formation of the mullite whiskers and the properties of the anorthite–mullite–corundum porous ceramics depended more on the sintering temperature than the holding time. By co-adding 12 wt% AlF3 and 4 wt% MoO3, mullite whiskers were successfully obtained at sintering temperatures upon 1350 °C for 1 h. Furthermore, the resultant specimens exhibited excellent properties, including open porosity of 66.1±0.7%, biaxial flexural strength of 23.8±0.9 MPa, and average pore size of 1.32 µm (the corresponding cumulative volume percent was 37.29%).  相似文献   

9.
《Ceramics International》2020,46(4):4086-4094
Recycled coal cinder was utilized as a raw material for the preparation of a high-porosity and low-cost whisker-mullite/alumina membrane support via in situ synthesis of mullite whiskers with MoO3 and AlF3 as additives. The effects of the sintering temperature and additives on the physical properties (porosity, shrinkage, phase composition, microstructure, pore size, nitrogen permeation, and tortuosity factor) of the porous mullite-based membrane supports were investigated in detail. Based on the synergistic effect of AlF3 and MoO3, the porosity of the as-synthesized membrane supports was as high as 60%. This is attributed to the reduction in the viscosity of the solid phase reaction interface between the mullite precursors by the MoO3 additives, thus promoting the formation of mullite grains, while the AlF3 additive effectively promoted the anisotropic growth of whisker-mullite via vapor deposition. This whisker-mullite membrane support with a cross-interlocking structure has an inherently unimodal pore-size distribution and low tortuosity factor (~0.4).  相似文献   

10.
An iron-rich mullite solid solution was synthesized by using α-Al2O3, fused-silica and Fe2O3 powders at elevated temperatures. The phase compositions and microstructures of the synthesized samples were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and field emission scanning electron microscope (FESEM). The occurrence states of Fe2+ and Fe3+ at different temperatures were analysed by X-ray photoelectron spectroscopy (XPS). The influence and the reaction mechanism of Fe2O3 addition on the synthesis of the mullite solid solution were clarified. The results showed that with the addition of Fe2O3, a liquid-solid sintered state was formed at 1300–1400?°C, which leaded to a reduction in the mullitization temperature. After sintering at 1600?°C, the quantitative analysis showed that the mullite phase content was 100%. Meanwhile, the Fe3+/2+ ions entered completely into the mullite to form a stable solid solution, which exhibited the crystal morphology of a spherical shape and a short columnar shape with a low aspect ratio. The crystal grains were interwoven and squeezed each other, showing good structural stability. The refractoriness under load (RUL) property of the sample sintered at 1700?°C was slightly higher than that of the sample sintered at 1600?°C.  相似文献   

11.
Translucent, high‐performance, mullite ceramics with anisotropic grains were prepared by the spark plasma sintering (SPS) of a powder mixture consisting of commercial mullite powder, which already contained small amounts of alumina (θ and α) and silica (cristobalite) (≤3 wt% in total), to which 2 and 1 wt% of yttria and amorphous silica was admixed, respectively. The combination of low‐viscosity Y2O3–Al2O3–SiO2 transient liquid formation and SPS sintering provided enhanced densification, also provoking anisotropic grain growth (which became exaggerated after 20 min of SPS dwell time), at a relatively low sintering temperature of 1370°C. In this way, it was possible to meet the conflicting demands for obtaining a dense mullite ceramic with anisotropic grains, ensuring good mechanical properties, while preserving a noticeable light transmittance. In terms of mechanical and optical properties, the best results were obtained when SPS dwell times of 5 and 10 min were employed. The as‐sintered samples possessed densities in the range 3.16–3.18 g/cm3, anisotropic grains with an aspect ratio (AR) of 7 and a grain thickness of approximately 0.45 μm, a flexural strength between 350 and 420 MPa, a Vickers indentation toughness and a hardness of approximately 2.45 MPa·m1/2 and 15 GPa, respectively, and an optical transmittance of between 30% and almost 50% in the IR range.  相似文献   

12.
《Ceramics International》2022,48(2):2273-2280
Cordierite-acicular mullite composites containing 0, 25, 50, 75 and 100 wt% of mullite were fabricated from waste MoSi2 and commercial powders of Al2O3 and spinel (MgAl2O4). Careful oxidation of pulverised waste MoSi2 rendered a precursor mixture of MoO3 and amorphous SiO2, which served as pore forming agent and SiO2 source, respectively. Evaporation of MoO3 at ~750 °C allowed production of highly porous cordierite-mullite ceramic composite after sintering in air at 1350 °C for 4 h. The combination of equiaxed cordierite grains and elongated (prism-like) mullite grains, resulted in unique microstructure with open porosity between 53.3 and 55.6 vol% which makes the obtained composite convenient for application as diesel particulate filter material. The presence of mullite affected four key thermo-mechanical properties which determine the thermal shock resistance of cordierite-mullite composite. The best thermal shock resistance was measured in composite containing 75 wt% of mullite. It was a result of improved thermal conductivity (1.081 W/mK) and bending strength (3.62 MPa) and relatively low values of coefficient of thermal expansion (3.8 × 10?6 K?1) and elastic modulus (2.27 GPa).  相似文献   

13.
《Ceramics International》2019,45(12):14517-14523
High-strength insulating ceramic materials were prepared using lightweight mullite microspheres with dense surfaces and high internal porosity as the main raw material and silica sol as a binder. The effects of AlF3·3H2O content on the in situ formation and growth of mullite whiskers were analyzed by X-ray diffraction and scanning electron microscopy. The obtained results showed that mullite whiskers were formed in large quantities at 1200 °C using AlF3·3H2O and V2O5 as additives; their optimal growth was observed at 4 wt% AlF3·3H2O and 1 wt% V2O5. The apparent porosity of the produced specimens was 39%; the MOR and CCS of the specimens were 31 and 152 MPa, respectively; the HMOR at 1300 °C was 11.32 MPa; and the thermal conductivity at 900 °C was 0.783 W m−1 K−1. The staggered whisker network structure formed between mullite microspheres not only improved the mechanical properties of the material, but also refined its pore size, reduced the thermal conductivity, and enhanced the thermal insulation properties.  相似文献   

14.
Mullite fibers/whiskers hierarchical structure materials (MFWs) were prepared via the three-stage method, i.e. seeds breeding, precursors introducing and whiskers growth. The mechanism of low-temperature in-situ synthesis of mullite whiskers during gas-phase reaction process has been discussed in detail. The seeds bred on mullite fibers (MFs) are the growth points and can effectively reduce the subsequent growth temperature of mullite whiskers (MWs). The precursors composed of aluminum source, silicon source and catalyst provided raw materials for whiskers growth. Under the heat treatment temperature of 800 °C, mullite seed grains were guided to in-situ transform into MWs. Moreover, MFWs fabricated via low-temperature in-situ growth mechanism on the MFs present low density (0.103–0.147 g/cm3) and ultralow thermal conductivity (0.0426–0.0514 W·m?1·K?1). Due to the lower whiskers growth temperature in this work than the ones in the most recent literatures, the three-stage method can be regarded as a viable strategy for low-temperature in-situ growth whiskers.  相似文献   

15.
Mullite nanofibers with small diameter and high surface area are an ideal candidate as the reinforcements in composite materials, and have promising applications in the fields of catalysis, filtration, thermal storage and so forth. In this work, electrospun mullite nanofibers were successfully synthesized using a hybrid mullite sol. The morphology and microstructure of fibers calcined at different temperatures were investigated. The morphology of fibers synthesized at 900 °C is porous with coarse surface, and after crystallization it becomes compact with smooth surface. The densities of fibers increase with the increasing temperatures. At 1200 °C the surface of fibers becomes coarse again, as a result of the grain growth of mullite. The crystallization path of fibers was revealed that the Al-rich mullite (4Al2O3·SiO2) together with amorphous silica formed at 1000 °C, changed into mullite with higher silica contents as temperature further increased, and finally transformed into a stable 3Al2O3·2SiO2 phase at 1200 °C. During this crystallization process, the flow of amorphous silica phase and the formation of mullite crystal structure benefit the densification of fibers, leading to the resultant fibers with fine and compact microstructure. The present findings can provide a guideline for the preparation of the promising high-mechanical mullite nanofibers and the synthesized nanofibers display great potential as reinforcements in structural ceramic composites.  相似文献   

16.
《Ceramics International》2023,49(1):236-242
In this paper, in-situ whiskers reinforced 3 mol% Y2O3 stabilized tetragonal ZrO2 (3Y-TZP) ceramics with different diameters were prepared using pressureless sintering by introducing tourmaline with different particle sizes into 3Y-TZP powders. The purpose of this research was to investigate the influence of in-situ formed whisker diameters on the densification, microstructure and mechanical properties of 3Y-TZP ceramics. The prepared ceramics were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. Findings indicated that in-situ mullite whiskers formed by phase transformation of tourmaline particles can promote the densification of 3Y-TZP ceramics, and further improve the dispersion of mullite whiskers in the 3Y-TZP ceramics. More importantly, the average diameter of mullite whiskers can be controlled by altering the tourmaline particle size. When the average particle size of tourmaline is 500 nm, 3Y-TZP composites have a near-fully dense microstructure of 99.09%, with the ZrO2 grain size of about 335 nm, the average diameter of mullite whiskers is 330 nm. Both the bending strength and fracture toughness reached optimal values of 836 ± 24 MPa and 10.6 ± 0.5 MPa m0.5, respectively. This paper provides a new way to design of the microstructure and strength-toughness of zirconia composite ceramics.  相似文献   

17.
Transparent MgO·1.5Al2O3 spinel ceramics were successfully prepared via reactive sintering of Al2O3 and MgO raw powders followed by hot isostatic pressing (HIP) using CaO as the sintering additive. The effects of CaO on the densification process, microstructure and optical quality of samples were investigated. It was found that the amount of CaO played an important role in the sintering process. By adding 0.05?wt% CaO, the sample with high transmittance (82.3% at 400?nm), small grain size (<5?μm) and high strength (228?±?15?MPa) was obtained after HIPing at 1550?°C. However, when the amount of CaO increased to 0.1?wt%, non-cubic and columnar-shaped grains generated at low HIP temperatures (1550–1650?°C), which severely reduced the optical quality of resulting samples. The grains were calcium aluminates, whose formation was closely related to the molar ratio of Al2O3/MgO, CaO amount and sintereing temperature.  相似文献   

18.
Ultralow thermal conductivity and ultralight mullite fibers/mullite whiskers composite aerogels (MF/MW) with secondary-pore structure have been prepared via vacuum impregnation and high-temperature treatment. The in-situ generation of mullite whiskers during vapour-solid reaction process and the mechanism of improving thermal stability have been discussed in detail. Under catalysis condition at 1200 °C, the zero-dimensional nanoparticles of SiO2-Al2O3 aerogels are guided to in-situ transform into one-dimensional mullite whiskers. The secondary-pore structure formed by the overlapped fibers and whiskers in MF/MW reduces the thermal conductivity [as low as 0.0488 W/m?1 K?1 compared with that of MF preform (0.0698 W/m?1 K?1)] and exhibits excellent thermal stability after 1400 °C heat treatment (0.0503 W/m?1 K?1) due to the macropores are decreased and gaseous heat transfer being further weakened effectively. Moreover, the MF/MW exhibits good mechanical performance with high critical compressive stress of 0.2809 MPa, which is more than 317% higher than that of MF preform (0.0673 MPa) at room temperature.  相似文献   

19.
《Ceramics International》2023,49(7):10238-10248
High-strength ceramics were prepared from high alumina fly ash (HAFA) and activated alumina as raw materials with magnesia as a sintering additive. The growth kinetics and influence mechanism of secondary mullite whiskers were investigated. Meanwhile, the effects of the Al2O3/SiO2 mass ratio (A/S) and the amount of magnesia on the content and morphology of mullite in the green body were investigated, so as to emphasize the effect of the liquid phase in the sintering process on the growth of secondary mullite whiskers. The results showed that the aspect ratio of secondary mullite whiskers increased significantly after adding activated alumina to increase the A/S ratio of raw materials. When 30 wt% activated alumina was added, the mullite content increased by 5.39%, and the whisker length increased from 1.36 μm to 4.18 μm. The addition of magnesia improved the liquid phase formed during the sintering process and the K value method was used to determine the sintering liquid phase content under various conditions. It was observed that increasing the magnesia level by 1 wt% could raise the liquid phase content by 5–7%. When the total liquid content of the system was 30–40%, the growth activation energy in the diameter direction of the whisker reduced significantly, promoting the growth of secondary mullite whiskers along the C axis. The morphology of mullite gradually developed from fibrous to long columnar crystal, making it combine more densely with the green body matrix. Furthermore, the staggered long columnar mullite crystal structure changes the fracture mode of ceramics from intergranular to transgranular fracture, which fully uses the high mechanical strength of mullite. As a result, the fracture energy and strength of ceramics are significantly improved.  相似文献   

20.
To obtain composite ceramics with excellent thermal shock resistance and satisfactory high?temperature service performance for solar thermal transmission pipelines, SiC additive was incorporated into Al2O3?mullite?ZrO2 composite ceramics through a pressureless sintering process. The effect of the SiC additive on thermal shock resistance was studied. Also, the variations in the microstructure and physical properties during thermal cycles at 1300 °C were discussed. The results showed that both thermal shock resistance and thermal cycling performance could be improved by adding 20 wt% SiC. In particular, the sample with 50 wt% Al2O3, 35 wt% Coal Series Kaolin (CSK), 15 wt% partially yttria?stabilized zirconia (PSZ), and 20 wt% SiC additional (denoted as sample A2) exhibited the best overall performance after firing at 1600 °C. Furthermore, the bending strength of sample A2 increased to 124.58 MPa, with an increasing rate of 13.63% after 30 thermal shock cycles. The increase in thermal conductivity and the formation of mullite were the factors behind the enhancement of thermal shock resistance. During the thermal cycles, the oxidation of SiC particles was favorable as it increased the microstructure densification and also facilitated the generation of mullite, which endowed the composite ceramics with a self?reinforcing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号