首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C/C多孔体对C/C-SiC复合材料微观结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
以4种纤维含量相同(32%,体积分数,下同),用化学气相渗透(chemical vapor infiltration,CVI)法制备了4种密度的碳纤维增强碳(carbon fiber reinforced carbon,C/C)多孔体,基体炭含量约20%~50%.利用液相渗硅法(liquid silicon infiltration,LSI)制备了C/C-SiC复合材料,研究了C/C多孔体对所制备的C/C-SiC复合材料微观结构和弯曲性能的影响.结果表明:不同密度的C/C多孔体反应渗硅后,复合材料的物相组成均为SiC,C及单质Si;随着C/C多孔体中基体炭含量的增加,C/C-SiC复合材料中SiC含量逐渐减少而热解炭含量逐渐增加.C/C-SiC复合材料弯曲强度随着材料中残留热解炭含量增加而逐渐增加,热解炭含量为约42%的C/C多孔体所制备的C/C-SiC复合材料的弯曲强度最大,达到320 MPa.  相似文献   

2.
《Ceramics International》2020,46(11):18976-18984
Herein, Si-Y eutectic alloy were introduced into porous C/C preform by reactive melt infiltration (RMI) to prepare C/Si-Y-C composite. Phase compositions and their distributions in the as-prepared composites were investigated. Result indicated that four main regions were found in the typical zone in Si-Y-C matrix, i.e., amorphous carbon, polycrystalline SiC doped with YSi2, amorphous SiC and single crystal YSi2. Based on the reaction between Si-Y alloy and C/C preform and microstructural observations, a model regarding to microstructure formation mechanism was proposed to reveal reaction process. Moreover, improved flexural strength, fracture toughness, thermal diffusivity and thermal conductivity of C/Si-Y-C composite were achieved compared to C/C-SiC.  相似文献   

3.
3D needle-punched C/C-SiC composites were fabricated from carbon fiber reinforced carbon (C/C) preforms, with densities of 1.05?g/cm3 and 1.28?g/cm3, by the gaseous silicon infiltration (GSI) method at fabrication temperatures from 1500?°C to 1800?°C. The compressive strengths and elastic moduli in transverse direction are larger than those measured under longitudinal compression except that samples fabricated from 1.28?g/cm3 density exhibit lower elastic moduli in transverse direction than in longitudinal direction. The compressive strength and modulus increase with fabrication temperature at 1500?°C and 1600?°C, and then decrease with higher fabrication temperature. Samples fabricated from the lower density C/C preforms have greater compressive strength and modulus. X-ray tomography was applied before and after the mechanical tests to characterize the microstructure and damage patterns, and the results indicated that for C/C-SiC composites fabricated at 1700?°C from 1.28?g/cm3 density C/C preform the matrix has a volume fraction (vol%) of 36.9%, and the initial intra-bundle cracks (0.6?vol%) display a space crossing structure while the inter-bundle pores (6.0?vol%) are special irregularly distributed.  相似文献   

4.
Twill multidirectional carbon-fiber-reinforced carbon and silicon carbide composites (i.e., C/C–SiC) were prepared via chemical vapor infiltration combined with reactive melt infiltration process. The effect of heat treatment (HT) on the microstructure and mechanical properties of C/C–SiC composites obtained by C/C preforms with different densities was thoroughly investigated. The results show that as the bulk density of C/C preforms increases, the thickness of the pyrolytic carbon (PyC) layer increases and open pore size distribution narrows, making the bulk density and residual silicon content of C/C–SiC composites decrease. Moreover, the flexural strength and tensile strength of the C/C–SiC composites were improved, which can be attributed to the increased thickness of the PyC layer. The compressive strength reduces due to the decrease of the ceramic phase content. HT improves the graphitization degree of PyC, which reduces the silicon–carbon reaction rate and thereby the content of the SiC phase. HT induces microcracks and porosity but not obviously affects the mechanical properties of C/C–SiC composites. However, the negative impact of HT can be compensated by the increased density of the C/C preforms.  相似文献   

5.
C/C—SiC—Si材料是一种新型的复合材料。本文通过反应熔渗法将液态硅渗入C/C多孔体中得到致密的C/C—SiC—Si复合材料。重点研究了制备C/C多孔体的树脂浸渍裂解法,并测定了在不同浸渍次数下得到的不同的C/C多孔体的体积密度和气孔率,用扫描电镜观察了其形貌,讨论了不同的C/C多孔体对C/C—SiC—Si复合材料最终形貌的影响。  相似文献   

6.
C/C–ZrC composites were prepared by isothermal chemical vapor infiltration (ICVI) combined with reactive melt infiltration (RMI). The ablation behavior of the C/C–ZrC was investigated using an oxyacetylene flame. The effect of ablation time on the microstructure and mechanical property evolution of the composite was studied. The results showed that as the ablation time prolonged, the linear and mass ablation rates of the composite increased firstly and then stabilized. After 15 s ablation, the flexural strength and modulus of the C/C–ZrC were interestingly increased by 141.8% and 40.9%, which reached 138.42 MPa and 6.45 GPa, respectively. During ablation, the preferential oxidation effect of ZrC could mitigate the oxidation of pyrolytic carbon (PyC) and carbon fibers, and the volume change induced by the ZrC →ZrO2 phase transformation could weaken its bonding with PyC, which was beneficial for releasing the internal residual stresses of the C/C–ZrC and then contributed to the mechanical performance improvement.  相似文献   

7.
Carbon/carbon composites modified by HfC-ZrC-SiC were fabricated by reactive melt infiltration with the aim of improving their ablation resistance for application in aerothermal environments. Their microstructure, thermophysical and ablation properties were investigated. Results show that the thermal diffusivity decreases with increasing temperature for all composites. The thermal conductivity of the C/HfC-ZrC-SiC composites decreasing with increasing HfC molar fraction is related to decreased grain size and increased porosity, which impede phonon interaction and increase the phonon scattering. High HfC content effectively improves the oxidation and ablation resistance of the composites. C/HfC-ZrC-SiC composites containing 8.8?mol.% HfC exhibited the best ablation resistance owing to a compact and continuous HfO2-ZrO2 mixed layer that formed on the ablated surface.  相似文献   

8.
Four kinds of sandwich-structured C/C-SiC and C/C-SiC-ZrC composites with or without a SiC interphase deposited by isothermal chemical vapor infiltration (ICVI), were designed and fabricated by a joint process of electromagnetic coupling chemical vapor infiltration (ECVI) and precursor infiltration and pyrolysis (PIP). The fabricated composites are macroscopically nonhomogeneous materials with low density, high strength and low ablation rate. The interphase and matrix constituents had remarkable effects on the mechanical and ablation properties of these composites. The C/C-SiC composites with an ICVI-SiC interphase exhibited the highest flexural strength of 306.5 MPa. While the C/C-SiC-ZrC composites with the interphase showed the best anti-ablation performance with low linear and mass ablation rates of 0.37 μm/s and 0.04 mg/cm2·s, respectively, after the ablation for 500 s under an oxyacetylene flame test at around 2000 °C.  相似文献   

9.
《Ceramics International》2017,43(8):5887-5895
Reaction bonded B4C-SiC composites were prepared by infiltrating silicon melt into porous B4C-SiC green preforms at 1500 °C in vacuum. The porous green preform was obtained from a mixture of polycarbosilane (PCS) and particle size graded B4C after pre-sintering at 1600 °C. For the first time, PCS was used to adjust the phase composition and microstructure of the reaction bonded boron carbide composites. It is indicated that the addition of PCS and its content has a significant influence on the microstructure as well as the mechanical properties of the subsequent reaction bonded B4C-SiC composites. For the B4C-SiC composite with 5 wt% PCS added, a flexural strength of 319±12 MPa, and an elastic modulus of 402±18 GPa can be achieved, which is 23% and 15% higher than those of the composite without PCS addition, respectively. While, with the higher content of PCS addition, the mechanical properties of the composites are decreased drastically due to the large amount of residual Si agglomeration in the composites. The reaction mechanisms as well as their microstructure evolution processes correlated with the mechanical properties of the reaction bonded B4C-SiC composites are further discussed in our work.  相似文献   

10.
Carbon fiber-reinforced ultra-high temperature ceramic matrix composites (C/UHTCMCs) were fabricated via Zr-Ti alloy melt infiltration (Zr-Ti MI) using carbon-carbon composite (C/C) preforms and alloys with three different compositions. Alloys were successfully infiltrated into C/C to form solid solutions of TiC and ZrC, with melting temperatures > 2900 °C. Notably, residual alloys were not observed after MI occurred at 1750 °C. Bending strength and fracture toughness of the C/UHTCMCs at room temperature and 1500 °C in air/Ar revealed that mechanical properties of the composites were similar to those of the C/C preform. During arc wind tunnel tests at 2000 °C, a recession of C/UHTCMCs fabricated using Ti-rich alloys was observed; however, this behavior was not observed for the composites prepared using Zr-rich alloys owing to the formation of a ZrO2 solid solution. Accordingly, Zr-Ti MI is a viable method for preparing C/UHTCMCs without degrading the mechanical properties of the C/C preform, while increasing the ablation resistance.  相似文献   

11.
The paper presents manufacture of C/C-SiC composite materials by wet filament winding of C fibers with a water-based phenolic resin with subsequent curing via autoclave as well as pyrolysis and liquid silicon infiltration (LSI). Almost dense C/C-SiC composite materials with different winding angles ranging from ±15° to ±75° could be obtained with porosities lower than 3% and densities in the range of 2 g/cm3. Thermomechanical characterization via tensile testing at room temperature and at 1300°C revealed higher tensile strength at elevated temperature than at room temperature. Thus, C/C-SiC material obtained by wet filament winding and LSI-processing has excellent high-temperature strength for high-temperature applications. Crack patterns during pyrolysis, microstructure after siliconization, and tensile strength strongly depend on the fiber/matrix interface strength and winding angle. Moreover, calculation tools for composites, such as classical laminate and inverse laminate theory, can be applied for structural evaluation and prediction of mechanical performance of C/C-SiC structures.  相似文献   

12.
四种用于制备炭/炭(C/C)复合材料的预制体,即1K发布叠层坯体(1#坯体),3K发布叠层坯体(4#坯体),发市 炭纸叠层坯体(2#坯体),特殊炭毡 发布叠层坯体(3#坯本),并探索了预制体结构对C/C复合材料力学性能影响.研究表明:用1#坯体制备的C/C复合材料弯曲强度最高,2#坏体制备的材料弯曲强度最低,随著炭纤维(CF)体积含量的增加,用四种坯体制备的材料弯曲强度增大。确定了弯曲强度的优化配方.  相似文献   

13.
本文采用化学气相渗透(CVI)工艺制备了2D针刺预制体增强的C/C-SiC复合材料,并对材料密度、力学性能以及强粒子冲蚀下的烧蚀机理和破坏机制进行了分析。结果表明,C/C-SiC复合材料在强粒子冲蚀下的破坏机制主要为机械冲蚀和颗粒侵蚀,其次是冲蚀过程中伴随的少量氧化。材料内层间孔、束间孔以及针刺孔的存在加剧了C/C-SiC复合材料破坏。研究发现,通过改变预制体结构来实现材料力学性能的均衡,并提高材料密度以减少材料的孔隙率将成为该使用环境下的材料设计原则  相似文献   

14.
FeSi2 modified C/C-SiC composites (C/C-SiC-FeSi2) are fabricated by chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI) with FeSi75 alloy. The effects of high-temperature annealing (1600?°C, 1650?°C, 1700?°C) on the microstructure and performance of C/C-SiC-FeSi2 are investigated. With the elevation of annealing temperature, the porosity of the composites and the content of SiC increase due to the evaporation of liquid Si and the further reaction of Si and C. The mechanical performance gradually decreases due to the catalytic graphitization of the carbon fiber, the high porosity and the thermal residual stress (TRS) caused by thermal mismatch of different phases. The coefficient of thermal expansion and thermal diffusivity slightly decrease with increasing annealing temperature for the increase of porosity. However, the friction performance of the heat treated materials at high braking speed are greatly improved attributing to the increase of SiC content and the capturing and storage function of pores on hard particles.  相似文献   

15.
《Ceramics International》2016,42(15):17174-17178
Reactive melt infiltration is a fast and economical fabrication process for high performance C/C-SiC composite. In order to help understanding reactive melt infiltration production of C/C-SiC composite by liquid silicon, wetting and infiltration of the porous C/C composite preform by liquid silicon were investigated using a sessile drop technique. The contact angle decreased with the increase of time while the drop base diameter increased. According to the variation of drop base diameter and contact angle as a function of time, four different stages corresponding to the interfacial reaction and infiltration of liquid silicon were identified during wetting of the porous C/C composite preform by the liquid silicon. The infiltration height based on wetting curve linearly increased with time, much smaller than that calculated according to Washburn equation, which strongly indicated the reaction control of silicon infiltration.  相似文献   

16.
Three carbon/carbon (C/C) composites modified by Zr–Ti–C, with different fiber architecture in preforms and the same density, were prepared using chemical vapor infiltration and reactive melt infiltration methods. Two other samples with the same architecture in preforms and different density were also fabricated by the same methods. Their ablation behaviors were examined by oxy-acetylene flame. The results showed that the samples with chopped web needled perform had better ablation resistance than that of the samples with needle-integrated and fine-weave pierced perform. In the models of ablation behaviors, the sealing time of pores and gaps on the ablated surfaces has been defined to indirectly estimate the ablation property. The analysis of models also indicated that high density of the composites and appropriate small diameter of bundles of carbon fibers led to the short sealing time and good ablation resistance of the C/C–carbide composites.  相似文献   

17.
《Ceramics International》2019,45(13):16545-16553
To achieve the high-value reutilization of recycled carbon fiber (rCF), a new strategy of preparing rCF-based C/C-SiC brake pads is proposed in this work. The results show that the rCF possesses crystal structure and tensile strength comparable with those of virgin CF (vCF) exception of pyrolytic char adhering to the surface of rCF after pyrolysis. The rCF was converted into C/C composites through impregnation-pyrolysis. Pyrolytic char was found to have no evident negative effect on the densification rates of the rCF C/C composites. By reactive melt infiltration, the rCF C/C-SiC composites were fabricated based upon the rCF C/C composites. The achieved rCF C/C-SiC composites do not differ markedly from the vCF group control in terms of microstructure and bending strength. Furthermore, the thermal diffusion coefficients of the rCF C/C-SiC composites are very close to those of vCF C/C-SiC composites in the temperature range 25°C-300 °C. The coefficient of friction values of the rCF C/C-SiC composites are as stable as those of vCF control group, both being maintained at approximately 0.4 during friction test, whether at 25 °C or 300 °C. The wear rate of the rCF C/C-SiC composites is 3.8 μm·min−1, nearly indistinguishable from that of the vCF C/C-SiC composites, i.e., 4.5 μm·min−1, further suggesting that the two materials resemble each other closely. The rCF C/C-SiC composites exhibit great potential for use as alternative brake pads to serve auto braking systems. This work opens up a new path for high-value reuse of rCF.  相似文献   

18.
With the aim of reducing the overall cost of the process, co-continuous metal–ceramic composites were obtained by reactive metal penetration, starting from very low cost cordierite preforms. It was investigated how the preform porosity influences both the residual porosity left in the composites after infiltration and the mechanical properties. It was demonstrated that, despite a significant fraction of the initial porosity remains in the final composite, by a suitable choice of the preform composition and preparation method the mechanical properties are not much inferior than in the case of composites obtained from the much more expensive silica glass.  相似文献   

19.
Pressure-assisted infiltration was used to synthesize SiC/Al 6061 composites containing high weight percentages of SiC. A combination of PEG and glass water was used to fabricate SiC preforms and the effect of the presence of glass water on the microstructure and mechanical properties of the preforms was evaluated by performing compression tests on the preforms. Also, the compressive strength and the hardness of the SiC/Al composites were investigated. The results revealed that the glass water improved the compressive strength of the preforms by about five times. The microstructural characterization of the composites showed that the penetration of the aluminum melt into the preforms was completed and almost no porosity could be seen in the microstructures of the composites. Moreover, the composite containing 75 wt% SiC exhibited the highest compressive strength as well as the maximum hardness. The results of the wear tests showed that increasing the SiC content reduces the wear rate so that the Al-75 wt% SiC composite has a lower wear rate and a lower coefficient of friction than those of Al-67 wt% SiC composite. This indicated higher wear resistance in these composites than the Al alloy due to the formation of a tribological layer on the surface of the composites.  相似文献   

20.
Ablation resistance of C/C-SiC composite prepared via Si-Zr alloyed reactive melt infiltration was evaluated using a facile and economical laser ablation method. Linear ablation rates of the composite increased with an increase in laser power densities and decreased with extended ablation time. The C/C-SiC composite prepared via Si-Zr alloyed melt infiltration presented much better ablation resistance compared with the C/SiC composite prepared by polymer infiltration and pyrolysis process. The good ablation resistance of the composite was attributed to the melted ZrC layer formed at the ablation center region. Microstructure and phase composition of different ablated region were investigated by SEM and EDS, and a laser ablation model was finally proposed based on the testing results and microstructure characterization. Laser ablation of the composite experienced three distinct periods. At the very beginning, the laser ablation was dominated by the oxidation process. Then for the second period, the laser ablation was dominated by the evaporation, decomposition and sublimation process. With the further ablation of the composite, chemical stable ZrC was formed on the ablated surface and the laser ablation was synergistically controlled by the scouring away of ZrC melts and evaporation, decomposition and sublimation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号