首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2019,45(15):18371-18381
In the present study eggshells-derived hydroxyapatite (EHA) coatings were successfully produced on Ti6Al4V substrates using micro-arc oxidation process (MAO) at various concentrations of EHA (i.e. 1, 1.5 and 2 g/L) in an electrolyte consisting of tri-sodium orthophosphate. The attributes of the coatings were determine by X-ray diffraction, attenuated total reflectance-fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The adhesion strength was evaluated using micro scratch tester, while the corrosion behavior of the MAO-coated substrates in phosphate buffer solution was determined by an electrochemical method. The results showed that as the EHA concentration increased, this was accompanied by a reduction in the porosity due to the formation of a dense and thick coating layer. This has also resulted in an increased in the surface roughness and degree of crsytallinity of the HA phase. The MAO-coated substrate prepared with 1.5 g/L EHA concentration exhibited a well-formed coating layer with improved adhesive strength and excellent corrosion resistance. The mechanism of EHA-coating formation as well as the enhanced corrosion resistance of the coated substrates were discussed. This research shows the viability of using calcium-rich waste eggshells to produce phase pure HA suitable for coating on Ti6Al4V substrate using MAO method.  相似文献   

2.
根据含氟羟基磷灰石(FHA)陶电沉积瓷技术,将纳米二氧化钛微粒加入电解液中,在钛基体表面进行电化学复合共沉积,获得了含氟羟基磷灰石复合纳米TiO2涂层(FHA/n-TiO2).对FHA/n-TiO2纳米复合涂层进行了真空烧结处理,并通过X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(IR)、X射线光电子能谱(XPS...  相似文献   

3.
《Ceramics International》2016,42(14):15502-15510
In this paper, coatings of hydroxyapatite partially substituted with zinc (ZnHA) were produced on titanium substrates by a two-step hydrothermal process using a precursor solution rich in calcium, phosphate and zinc. Activation of titanium surfaces was performed by oxidation with an acidic HF/HNO3 solution. The coated substrates were then converted into HA by immersion in an alkali 0.1 M NaOH solution. The ZnHA samples were characterized by several techniques and their in vitro behavior was studied in comparison to hydroxyapatite (HA) and titanium (Ti-control) samples. A uniform and homogeneous calcium-deficient carbonate apatite coating was obtained for all samples, both doped and undoped with zinc. The percentage of zinc incorporated in the coatings is 7 at%, and the Ca/P ratio is 1.61(±0.01) for both types of samples, suggesting that Zn is incorporated substitutionally, replacing Ca atoms into the HA structure. The incorporation of Zn in the HA structure changed the crystals morphology, reduced crystals sizes and decreased the deposition rate showing that zinc is an inhibitor of the growth of HA crystal. X-ray diffraction showed that HA is the single crystalline phase present after alkali treatment. The coating adhesion strength was evaluated in terms of the critical load (Lc) obtained from scratch tests and no significant difference was found between the two tested groups, indicating the good adhesion of ZnHA to Ti substrates. The in vitro response of human osteoblasts (HOB) exposed to the surfaces of HA and ZnHA coatings was evaluated. The results of Live/Dead tests showed cell viability for all samples surfaces, but the adhesion and proliferation tests showed that ZnHA samples presented better adhered and spread cells compared with HA. ZnHA coatings presented cells with elongated or polygonal shapes and clearly more spread than HA. Quantitative analysis showed that there was a significantly higher number of cells adhered to ZnHA coatings compared to HA, indicating the zinc incorporation stimulates osteoblast proliferation.  相似文献   

4.
Titanium and its alloys are widely used for medical implant applications, but their corrosion in the physiological environment leads to the discharge of metal ions, which can trigger severe health issues. In the present study, calcium silicate reinforced hydroxyapatite (HA-CS) coatings were deposited on the Ti6Al4V substrate by using atmospheric plasma spray (APS) process with an aim to improve the corrosion resistance and bioactivity. The coatings were prepared by varying the weight percentage (wt %) of calcium silicate (CS) reinforcement in hydroxyapatite (HA) as Ha/x CS (x = 0, 10, 20 wt %). The SEM analysis of the pure HA coating revealed the presence of surface microcracks, whereas HA-CS coatings displayed the crack-free surface morphology. The corrosion investigation revealed that with the progressive increment of CS content in HA coating, the corrosion resistance of HA-CS coatings improved. In addition, surface roughness, porosity, microhardness and crystallinity increased with the increase of CS content in HA. The findings of this study indicate that the development of plasma sprayed HA-CS coatings is a promising approach to improve the performance of Ti6Al4V alloy for medical implant applications.  相似文献   

5.
Bovine hydroxyapatite (BHA) (from cortical bone), was selected as the main electrolyte for plasma electrolytic oxidation (PEO) on Ti6Al4V implant. The prepared PEO coatings were examined by X-ray diffraction, field emission scanning electron microscope and energy-dispersive X-ray spectroscopy. The surface roughness, adhesion strength, wettability, surface energy and corrosion behaviour of the film were also investigated. The results show that the oxide layer (26 μm) formation on the Ti6Al4V was rough and porous. The micro-pores were filled with anatase TiO2, cubic MgO and hexagonal BHA particles. The porous structures and the compound particles were mainly composed of Mg, O, Ca, P, Ti, Na and Al. Unlike previous coatings produced from calcium and phosphorus inorganic solutions, the coating formation from a newly developed bovine bone-derived HA electrolyte revealed an additional MgO phase in the coating layer. Moreover, higher amount of single phase hexagonal crystalline BHA phase with a Ca/P ratio of 1.1 was achieved with a single PEO process. A film-to-substrate adhesion strength of 1862.24 mN and scratch hardness of about 4.1 GPa was achieved from this method. The TiO2/MgO/BHA film exhibited better wettability, higher surface energy and superior corrosion resistance compared to the bare Ti6Al4V substrate.  相似文献   

6.
In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO(2)) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO(2) coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO(2) coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO(2) double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO(2) coatings on Ti substrates might be a promising material for bone replacement.  相似文献   

7.
《Ceramics International》2022,48(14):19937-19943
Titanium with a bioceramic hydroxyapatite (HA) coating has been widely used in biomaterials owing to its excellent mechanical characteristics and high osteoconductivity. However, the interfacial strength of Ti/HA prepared by electrochemical deposition (ED) is relatively low because the physical combination is typically inadequate. In this study, to improve the interfacial strength, a micro-arc oxidation (MAO) process with calcium was introduced for preparing a connecting interlayer known as the MAO coating. Pulsed ED was employed to synthesise the HA coating on the MAO surface using an electrolyte with 6 wt% H2O2. Sample characterisations revealed that the MAO coating comprised porous TiO2 (rutile and anatase) with Ca or CaTiO3. The formation of CaTiO3 depends on the current density, reaction time, and concentration of Ca2+, in addition to voltage. The MAO coatings exhibited a higher corrosion resistance than that exhibited by Ti substrates. Furthermore, the HA coating on the MAO coating was confirmed to be plate-like Ca-deficient HA. The final sample had a Ti/TiO2(Ca)/HA structure, and its adhesive strength was approximately double that of the Ti/HA sample. In particular, the MAO coating synthesised at a high Ca2+ concentration exhibited an improved adhesive strength (2.326 MPa). The application of the MAO coating containing Ca as a connecting interlayer is a promising strategy for improving the HA adhesion strength.  相似文献   

8.
In this study, hydroxyapatite (HA) coatings containing carboxymethyl cellulose (CMC) and graphene (Gr) were developed on AZ31 magnesium alloy through two-step electrophoretic deposition method. The morphology and chemical bonding of coatings were characterized and also the phase identification was done using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction, respectively. Moreover, the corrosion behavior of the applied coatings was compared with the bare AZ31 Mg alloy substrate in the simulated body fluid by the means of potentiodynamic polarization test and electrochemical impedance spectroscopy. Obtained results revealed that the novel HA-CMC-Gr coating possesses the highest corrosion resistance compared to the HA, HA-CMC, and HA-Gr coatings due to its uniform and compact structure. To investigate the mechanical properties and to elucidate the effect of CMC on the adhesion of coating-alloy interface, pull-off test was employed, where results demonstrated that the addition of CMC increases the adhesion force from 1.06 MPa to 1.62 MPa. Besides, the modulus of elasticity and the hardness of HA and HA-Gr composite coatings were compared by applying nanoindentation test. Interestingly, it is detected that the presence of Gr has considerably increased the elastic modulus of the coating by approximately 30% in comparison to the pure HA coating.  相似文献   

9.
The nanostructured diamond-like carbon/hydroxyapatite composite coating (DLC/HA) was deposited using magnetron sputtering technique with a densely packed columnar cross-sectional structure and a uniform granular surface morphology. After heat treatment, the amorphous structure of the coating was transformed into a crystal structure. Nanohardness and scratch tests results demonstrated the DLC transition layer significantly enhanced the nanohardness of Ti6Al4V substrates from 4.8 GPa to 10.4 GPa, and increased critical load from 16.6 N (pure HA layer) to 26.5 N (DLC layer) without obvious brittle fracture, flaking and delamination. Electrochemical and immersion tests results demonstrated that DLC/HA composite coatings with a dense gradient transition interlayer had better corrosion resistance and could prevent harmful metal ions being released into the SBF solution more effectively than single HA coatings. Furthermore, active Ca2+ ions can be rapidly released from the coating surface during initial immersion in the SBF solution, and facilitated the formation of bone-like apatite.  相似文献   

10.
A gradient transition multilayer hydroxyapatite/titanium nitride (HA/TiN) coating was prepared on the Ti-6Al-4V alloy by magnetron sputtering. The composition, surface topography, microstructure, adhesion strength and electrochemical properties of the as-deposited coatings were characterized by SEM/EDS, AFM, XRD, FT-IR and electrochemical workstation. The experimental results showed that the single TiN coating deposited at a partial pressure of nitrogen (N2) of 0.08?Pa had the best internal stress and tribological performance, and its volume loss was only 0.89% of that of Ti-6Al-4V alloy. The introduction of the TiN transition layer greatly improved the wear resistance of the Ti-6Al-4V alloy, and the adhesion strength of the HA layer to the substrate increased from 6.50?±?0.5?N to 11.70?±?1.2?N, an increase of 56%. The HA/TiN coating surface consisted of uniform hemispherical particles with dense structure and invisible defects (micro-cracks and pores). For the HA surface layer, the crystal structure and active hydroxyl (-OH) group was restored after heat treatment. Potentiodynamic polarization experiments indicated that the HA/TiN coating achieved the lowest corrosion current density and the most positive corrosion potential compared to the single TiN layer and Ti-6Al-4V alloy. In summary, it can be conclude that the gradient transition layer can well improve the mechanical properties and electrochemical behavior of the titanium alloy, and largely ensuring the stability of the surface bioactive coating.  相似文献   

11.
Magnesium and its alloys—a new class of degradable metallic biomaterials—are being increasingly investigated as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. However, the high corrosion rate in physiological environments prevents the clinical application of Mg-based materials. Therefore, the objective of this study was to develop a hydroxyapatite (HA) coating on ZK60 magnesium alloy substrates to mediate the rapid degradation of Mg while improving its cytocompatibility for orthopedic applications. A simple chemical conversion process was applied to prepare HA coating on ZK60 magnesium alloy. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, respectively. The corrosion properties of samples were investigated by immersion test and electrochemical test. Murine fibroblast L-929 cells were harvested and cultured with coated and non-coated ZK60 samples to determine cytocompatibility. The degradation results suggested that the HA coatings decreased the degradation of ZK60 alloy. No significant deterioration in compression strength was observed for all the uncoated and coated samples after 2 and 4 weeks’ immersion in simulated body fluid (SBF). Cytotoxicity test indicated that the coatings, especially HA coating, improved cytocompatibility of ZK60 alloy for L929 cells.  相似文献   

12.
《Ceramics International》2016,42(8):10085-10093
Over the last few years, a trend in medical applications is to find solutions for metallic implants using coatings that can improve bioactivity and osseointegration. The goal of this study was to obtain and investigate sputtered hydroxyapatite coatings enriched with SiC to enhance the bioactivity and osseointegration of Ti alloys used in orthopaedic applications. The films were characterized in terms of phase composition, roughness, corrosion resistance in a synthetic body fluid (SBF) and in vitro biocompatibility with MG 63 osteoblast-like cells. All of the investigations were conducted using XRD, AFM, cell viability assays and proliferation tests. The results revealed that the addition of SiC had a positive influence on the properties of the sputtered hydroxyapatite. The addition of SiC led to an improvement in coating adhesion and corrosion resistance in an SBF solution over the HAP coating. All of the coatings presented cell viability values over 90%, revealing their suitability for medical applications.  相似文献   

13.
Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 ± 0.39 MPa (pure HA) to 2.75 ± 0.38 MPa (2 wt.% GO/HA) and 3.3 ± 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80–90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate.  相似文献   

14.
An ultrasonic induction heating (UIH) deposited monetite coating on (NH4)2S2O8 treated (NT) C/C composites was subjected to a hydrothermal treatment to form a hydroxyapatite (HA) coating. This HA coating was then placed in a NaF solution and hydrothermally treated a second time to produce a fluorinated hydroxyapatite (FHA) coating. The structure, morphology and chemical composition of the HA and FHA coatings were characterized by XRD, FTIR, XPS SEM and EDS, and the adhesiveness of the two coatings to the NT-C/C substrates was evaluated by a scratch test. The results showed that after the NaF treatment, the FHA coating was a mixture of FHA and HA with some calcium oxides, and the FHA showed a higher degree of crystallization than the HA coating though the morphologies were similar. In addition, the EDS-determined Ca/P atomic ratio for the FHA coating was about 1.78 which was larger than 1.69 ratio of the HA coating. The bonding strength of the HA coating on C/C could reach a critical load of 60.3 N, while that of the as-prepared F-containing HA coating only had a critical load of 42.4 N. The reason of the lower adhesion for the FHA coating than that for the HA coating is suggested to be correlated with the constituent and structure of the two coatings.  相似文献   

15.
Composite coatings, consisting of calcium phosphate (CaP) ceramics and phosphate-based glass (P-glass), were obtained on a strong ZrO2 porous scaffold to improve biocompatibility by combining mechanical properties and biological activity. Powder mixtures of hydroxyapatite (HA) and P-glass in varying composition and content were dip-coated on a ZrO2 porous scaffold and heat-treated above 800°C for 2 h in air. During thermal treatment, substantial reaction and crystallization occurred, resulting in coating phases of HA, tricalcium phosphate (TCP), dicalcium phosphate (DCP), and surrounding glass. The CaP-glass coating layer was highly dense and uniform and adhered firmly to the ZrO2 scaffold. The adhesion strength of the coating layer as tested on a nonporous disk increased with increasing glass addition and decreasing CaO content in glass. The highest strength was about 40 MPa, an improvement of twice as high as that of pure HA coating. The osteoblastic cells grew and spread actively through the coated scaffolds. The differentiation of cells on the CaP coatings was much higher than that on ZrO2 substrate and comparable to or slightly higher than that on pure HA coating.  相似文献   

16.
《Ceramics International》2020,46(11):18573-18583
The current study analyzes the surface, mechanical, biocorrosion, and antibacterial performances of a nanocrystalline TiN ceramic coating synthesized using cathodic arc-physical vapor deposition (PVD) on biomedical Ti6Al4V substrates. The surface hardness and modulus of elasticity were assessed using the microindentation method. The adhesion, friction coefficient, and antibacterial properties of the coating were evaluated. The in vitro corrosion of the prepared coated Ti alloy substrate was analyzed in simulated body fluid (SBF) via cyclic potentiodynamic polarization (CPP), dynamic electrochemical impedance spectroscopy (DEIS), and scanning vibrating electrochemical technique (SVET). The results demonstrated that a nanocrystalline TiN coating with a crystallite size of 10.33 nm and a thickness of 5 μm was formed with good adhesion on the alloy surface. The coating had an enhanced surface hardness of 38.63 GPa and a modulus elasticity of 358 GPa, and exhibited enhanced resistance to plastic deformation compared with the substrate – features that can enhance the service life of an implant. The antibacterial experiments indicated an upgraded antibacterial performance of the TiN coating compared to the bare alloy. The in vitro corrosion-resistance analyses confirmed the enhanced surface protective performance of TiN ceramic coatings against biocorrosion in SBF. The results showed higher impedance values in DEIS, a higher passive region in the CPP analysis, and a lower anodic current density in the SVET analysis compared with the bare substrate.  相似文献   

17.
The purpose of the research was to establish the influence of the solution composition and the electrophoretic deposition voltage on the coating homogeneity and thickness, nanohardness, adhesion, corrosion resistance and wettability. The Ti13Zr13Nb alloy was coated by the electrophoretic technique with hydroxyapatite in a solution containing 0.1, 0.2 or 0.5?g nanoHAp in 100?mL of suspension and at voltage 15, 30 or 50?V. The scanning electron and atomic force microscopies, polarization curves technique for corrosion assessment, nanoindentation and nanoscratch tests, and measurements of contact angle in simulated body fluid were performed. The obtained results revealed the complex and interrelated effects of both process determinants on the structure and properties of hydroxyapatite coatings, which were attributed to the role of the size, shape and content in suspension of hydroxyapatite particles.  相似文献   

18.
The biocompatibility properties of Ti scaffolds can be improved significantly by hydroxyapatite (HA) composite coating. We successfully coated the surface of the Ti substrates by in-situ formation of HA nanocrystals on TiO2 sublayer under calcium acetate and trisodium phosphate electrolytes through the plasma electrolytic oxidation (PEO) process. The effects of the process parameters and passivation on the characteristics of the coated substrates were studied using X–ray diffraction, Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy, and Energy–dispersive X–ray spectroscopy. The systematically controlled experimental studies indicated that using the higher calcium/phosphorous ratio in the electrolyte enhances the micro arcs power and consequently, thickens the synthesized HA layer. The HA nanocrystals were tailored on the walls and edges of the discharge channels due to the locally concentrated heating zones, which consequently resulted in noticeable amounts of Ca and P dopants in porous TiO2.  相似文献   

19.
The carbon nano-tubes (CNTs) reinforced hydroxyapatite (HA), with various functionalized CNTs concentration ranging from 0 to 1.5?wt%, were deposited on AZ31 magnesium alloy by direct and pulse cathodic electrodeposition methods. The corrosion resistance of the coatings was tested in simulated body fluid (SBF) using different electrochemical methods such as open circuit potential, polarization and electrochemical impedance spectroscopy. The in-vitro behavior, changes in solution pH as well as the amount of evolved hydrogen of these coatings were also evaluated during five days immersion in SBF. The results indicated that the pulse deposited HA having 1% CNTs coating was the optimum condition which decreased the corrosion current density of AZ31 magnesium alloy from 44.25?µA/cm2 to 0.72?µA/cm2. Moreover, it stabilized the alkalization behavior of AZ31 alloy and caused a tenfold decrease in the amount of hydrogen generation in SBF. Additionally, the formation of new hydroxyapatite layer on the surface of the pre-exist coatings after five days immersion in SBF was confirmed by SEM characterization.  相似文献   

20.
《Ceramics International》2022,48(4):4999-5008
In the present work, nanostructured hydroxyapatite (HA)-containing coating was prepared on a Ti surface by ultrasonic mechanical coating and armoring (UMCA). A Ti plate was pre-coated with HA slurry, followed by UMCA, which was achieved by high-frequency ZrO2 ball bombardment. The UMCA process comprised several cycles of pre-coating and ball bombardment, providing high amounts of HA and good coating adhesion. The coating mainly consisted of nano-HA particles (less than 10 nm) and a small amount of Ti. Furthermore, the deformation structures of the Ti surface region were characterized in a nanocrystalline layer with a grain size of 50–200 nm. Additionally, the coating exhibited improved bioactivity and corrosion resistance in Hanks’ balanced salt solution than the Ti surface. Furthermore, the in vitro cytotoxicity test assessed that the HA-containing coating was non-cytotoxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号