首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Novel Mn4+-activated KLaMgWO6 red phosphors with different Mn4+ concentrations were successfully synthesized via a high-temperature solid-state reaction method. The phase formation, microstructure, photoluminescence properties, decay lifetimes and internal quantum efficiency were discussed to analyze the properties of the as-prepared phosphors. The samples belonged to monoclinic crystal system with enough WO6 octahedrons that provided suitable sites for Mn4+ ions. Upon the excitation of 348?nm, KLaMgWO6:Mn4+ phosphors gave bright far-red emission around 696?nm due to the 2Eg4A2g transition of Mn4+ ions. The critical concentration of Mn4+ was 0.6?mol% and the concentration quenching mechanism belonged to electric multipolar interaction. Besides, the CIE chromaticity coordinates of the KLaMgWO6:0.6%Mn4+ phosphor were (0.7205, 0.2794) which located in deep red range, and its color purity reached up to 96.6%. The KLaMgWO6:0.6%Mn4+ sample also exhibited high internal quantum efficiency of 43%. All of the admirable optical properties indicate that the KLaMgWO6:Mn4+ phosphors can be applied to indoor plant growth illumination.  相似文献   

2.
A novel Mn4+ activated Ca2LaSbO6 (CLS) far-red phosphor was synthesized by high temperature solid state reaction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence spectra, ultraviolet-visible spectra, luminescence decay times, emission-temperature relationship and internal quantum efficiency (IQE). It is found that CLS:Mn4+ phosphor has a strong broad excitation band in the range of 200–550?nm. The samples can be excited by ultraviolet and blue light. There is a wide emission band centered at 685?nm between 600?nm and 760?nm. The optimum doping concentration of Mn4+ is approximately 0.5?mol%. In addition, all the CIE chromaticity coordinates of CLS:0.005Mn4+ located at far-red region. The concentration quenching mechanism is the dipole-dipole interaction of Mn4+ activator. Importantly, the CLS:0.005 Mn4+ sample has an IQE of up to 52.2%. Finally, a 365?nm ultraviolet light emitting diode (LED) chip combined with 0.5?mol% Mn4+ far-red phosphor was used to fabricate the LED device. All the results indicated that CLS:Mn4+ phosphors have potential applications in indoor plant cultivation.  相似文献   

3.
Color tunable Tb3+ doped SrGd2Al2O7 nanophosphor is synthesized employing a facile and economic urea assisted solution combustion approach. XRD studies confirm the crystallization of single phased SrGd2(1-x)Tb2xAl2O7 nanophosphor in tetragonal lattice with I4/mmm (139) space group. Rietveld refinement is performed over SrGd1.9Tb0.1Al2O7 sample to execute qualitative as well as quantitative phase analysis. TEM analysis confirms the more or less spherical shaped phosphors in nano domain with average particle size ranging 45–80?nm. Photoluminescent investigation reveals that this nanophosphor can be successfully excited by ultraviolet light yielding significant luminescent properties arising due to radiative transitions from 5D3,4 levels to 7Fj levels. Dipole-dipole interactions are solely responsible for the energy transfer causing concentration quenching. Concentration controlled luminescent tendency can be employed to induce chromaticity from blue to green region. Findings of the study proclaim the application of this nanophosphor as one of the green component of tricolor based ultraviolet excited white LEDs.  相似文献   

4.
Ni0.5Co0.5Fe2O4/graphene composites were synthesized successfully via one-step hydrothermal method. The crystal structure, morphology and corresponding elemental distribution, electromagnetic parameters and microwave absorption performances of the as-prepared composites were measured by XRD, SEM, TEM and VNA, respectively. The results indicated that the microwave absorbing performance can be obviously enhanced through the addition of graphene in a suitable range, the magnetic loss plays a dominant contribution for the microwave absorption of composites. The maximum reflection loss of ?30.92?dB at 0.84?GHz with a ?10?dB bandwidth over the frequency range of 0.58–1.19?GHz is obtained when the composite contains 12?wt% graphene and the thickness of sample is 4?mm. This investigation presents a simple method to prepare Ni0.5Co0.5Fe2O4/graphene composites with excellent microwave absorption performance in the low frequency band of 0.1–3?GHz.  相似文献   

5.
A series of Eu3+-doped C12H18Ca3O18 phosphors were synthesized through a facile hydrothermal method and the properties of as-prepared phosphors were explored by X-ray diffractometer (XRD), scanning electron microscope (SEM), and photoluminescence (PL) spectrometer. The exploration results indicated that the C12H18Ca3O18:Eu3+ had been successfully synthesized. The morphology of C12H18Ca3O18:Eu3+ was a strip with the size of 100–4000 nm × 50–400 nm × 50–200 nm and the ratio of length to width of 2–80. The strongest emission peak of C12H18Ca3O18:Eu3+ around 620 nm was ascribed to 5Do7F2 transition of Eu3+, and the peaks centered at 590, 653 and 694 nm respectively corresponded to 5Do7F1, 7F3, and 7F4 transitions. C12H18Ca3O18: Eu3+ gave the red light emission, as indicated by color coordinate analysis. The photoluminescence intensity of the phosphors prepared under the Eu3+ concentration of 6% was the highest. The crystal structure of C12H18Ca3O18:Eu3+ was changed after europium ions occupied the lattice position of calcium ions. Europium ion could displace calcium arbitrarily. As a new kind of matrix, calcium citrate possesses the properties of both organic and inorganic compounds and the luminescent C12H18Ca3O18: x Eu3+ particles may be applied in biological fluorescent tags and luminescent materials.  相似文献   

6.
Performing carbon coating on the surface of phosphors has been proven to be an effective strategy to enhance the oxidation resistance, which is an important factor to achieve stable luminescent devices. Therefore, a good understanding of the protection mechanism favors a continuous improvement of oxidation resistance of phosphors. In present paper, the evolution of the carbon layer, Eu valence (Eu2+/Eu3+), and luminescent properties for the C coated BaMgAl10O17: Eu2+ phosphor when annealed at high temperature is investigated carefully. Decrease of carbon layer promotes the appearance color transition from black to white as the annealing temperature rises to 1000?°C in air. As expected, the decrease of carbon layer will enhance the luminescence intensity, but risk the possible oxidation of Eu2+ to Eu3+, which inhibits the blue emission ascribed to Eu2+. The results indicate that luminescence intensity of phosphor is dependent on the synergistic effect of carbon thickness and Eu2+/Eu3+ ratio. Additionally, a reduction reaction of Eu3+ to Eu2+ is observed in C coated BaMgAl10O17: Eu2+ phosphor when annealed at high temperature, which also contributes to the higher luminescence intensity.  相似文献   

7.
We report the effect of Cu2+ ion on CaAl2O4 with different molar concentrations of 0.0, 0.4 and 0.8 M prepared by simple combustion method. The materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and scanning electron microscopy (SEM). DC electrical conductivity has also been measured to study the electrical behavior of the materials. The XRD patterns confirm the formation of single-phase CaAl2O4 along with some impurity phases like CaAl4O7, CaAl12O19 and Ca12Al14O33. The FT-IR spectra show the stretching and bending vibrations of the synthesized compounds. DC electrical conductivity of the Ca1−xCuxAl2O4 is found to vary from 26.46 × 10−4 to 515.68 × 10−4 S cm−1 for x = 0.0 to x = 0.8 at the measuring temperature of 1000 °C. SEM images show the morphological features of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号