首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption of superplasticizer admixtures on alkali-activated slag pastes   总被引:2,自引:0,他引:2  
Alkali-activated slag (AAS) binders are obtained by a manufacturing process less energy-intensive than ordinary Portland cement (OPC) and involves lower greenhouse gasses emission. These alkaline cements allow the production of high mechanical strength and durable concretes. In the present work, the adsorption of different superplasticizer admixtures (naphthalene-based, melamine-based and a vinyl copolymer) on the slag particles in AAS pastes using alkaline solutions with different pH values have been studied in detail. The effect of the superplasticizers on the yield stress and plastic viscosity of the AAS and OPC pastes have been also evaluated.The results obtained allowed us to conclude that the adsorption of the superplasticizers on AAS pastes is independent of the pH of the alkaline solutions used and lower than on OPC pastes. However, the effect of the admixtures on the rheological parameters depends directly on the type and dosage of the superplasticizer as well as of the binder used and, in the case of the AAS, on the pH of the alkaline activator solution. In 11.7-pH NaOH-AAS pastes the dosages of the superplasticizers required to attain similar reduction in the yield stress are ten-fold lower than for Portland cement. In this case the superplasticizers studied show a fluidizing effect considerably higher in 11.7-pH NaOH-AAS pastes than in OPC pastes. In 13.6-pH NaOH-AAS pastes, the only admixture observed to affect the rheological parameters is the naphthalene-based admixture due to its higher chemical stability in such extremely alkaline media.  相似文献   

2.
In this work, the relationship between the composition of pore solution in alkali-activated slag cement (AAS) pastes activated with different alkaline activator, and the composition and structure of the main reaction products, has been studied. Pore solution was extracted from hardened AAS pastes. The analysis of the liquids was performed through different techniques: Na, Mg and Al by atomic absorption (AA), Ca ions by ionic chromatography (IC) and Si by colorimetry; pH was also determined. The solid phases were analysed by XRD, FTIR, solid-state 29Si and 27Al NMR and BSE/EDX.The most significant changes in the ionic composition of the pore solution of the AAS pastes activated with waterglass take place between 3 and 24 h of reaction. These changes are due to the decrease of the Na content and mainly to the Si content. Results of 29Si MAS NMR and FTIR confirm that the activation process takes place with more intensity after 3 h (although at this age, Q2 units already exist). The pore solution of the AAS pastes activated with NaOH shows a different evolution to this of pastes activated with waterglass. The decrease of Na and Si contents progresses with time.The nature of the alkaline activator influences the structure and composition of the calcium silicate hydrate formed as a consequence of the alkaline activation of the slag. The characteristic of calcium silicate hydrate in AAS pastes activated with waterglass is characterised by a low structural order with a low Ca/Si ratio. Besides, in this paste, Q3 units are detected. The calcium silicate hydrate formed in the pastes activated with NaOH has a higher structural order (higher crystallinity) and contains more Al in its structure and a higher Ca/Si ratio than those obtained with waterglass.  相似文献   

3.
In this research, the effects of natural seawater (SW) on the properties of alkali-activated slag/fly ash (AASF) are studied. AASF prepared with deionized water is set as the reference mixture. The results showed that the use of natural SW resulted in a prolonged setting time and lower heat release, but no obvious impact on the flowability of AASF specimens. The long-term compressive strength became higher when SW was used, whereas the corresponding flexural strength and fractural toughness turned lower. The use of SW induced the formation of new products that were not identified in the reference mixture, such as Cl–hydrocalumite and gypsum. In addition, it is evidenced that the dissolution of fly ash (FA) particles was significantly delayed with the incorporation of SW. All these results were related to the various ions introduced by the natural SW and their interactions with the alkaline activator as well as the precipitation of salts on slag and FA surfaces or in the matrix.  相似文献   

4.
A cement-stabilized MSWI fly ash was leached according to the diffusion test NEN 7345. The influence of carbonation during leaching was tested by bubbling N2, air or CO2 through the leachant. The original test, where no gas is bubbled, was used as a reference. The periodically renewed leachant was analysed for its ionic concentrations. Porosity measurements, XRD and scanning electron microscopy (SEM) analysis were performed.For some metals, leaching is seriously underestimated when precipitation on the tank walls is not included. Thus, the sum of the dissolved portion and the precipitated portion has to be taken into account. Diffusion tests with N2 and air bubbling gave results that were not significantly different from those obtained in the reference test. Bubbling of pure CO2, however, influenced leaching profoundly. This was mainly due to the lowering of pH. The reaction of hydroxides to carbonates—another effect of CO2 bubbling—had a negligible effect on leaching.  相似文献   

5.
This paper presents the results of the investigation of the hydration of alkali-activated slag (AAS) by nuclear magnetic resonance spectroscopy (NMR). The cross-polarization (CP) technique was used in combination with magic-angle spinning (MAS). This research was part of a systematic study of alkaline activation of slag by several different techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with X-ray microanalysis of energy dispersive spectra (EDS), differential thermal analysis (DTA) and calorimetry. This NMR study provides information on the polymerization of silicates, the role of aluminates in cement hydration and the nanostructure of C-S-H gel.  相似文献   

6.
Samples of a Class F fly ash and calcium hydroxide (CH) hydrated in pH 13.2 sodium hydroxide solution were analyzed using backscattered electron, scanning Auger, and X-ray microanalysis. The Class F fly ash, composed mainly of aluminosilicate glass and silica, was reacted for 8, 14, and 78 days at various temperatures. These samples represent both long-term and early-age stages of hydration. Results show that a hydrate product with calcium to silica ratio near 1.4 and katoite are formed. X-ray and scanning Auger microanalysis show evidence of the formation of hydrate product on the surface of both fly ash and CH particles at early ages. This finding suggests a new mechanism to explain prior data that shows that the hydration rates increase with increasing CH-ash content in the starting mixture.  相似文献   

7.
The present study investigated the physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Strength test results showed that the strength increased until exposure to 400 °C and thereafter started to decrease. The strength increase below 400 °C was attributed to the binder gel which formed after exposure, decreasing the porosity. The dehydration of C-A-S-H and the formation of N-A-S-H simultaneously occurred, inducing the transformation of pore structure from microporous to mesoporous state. The crystallization of the binder gel resulted in an increase in the porosity, thereby inducing a decrease in the strength above 400 °C and is responsible for the transformation of the pore structure from mesoporous to macroporous state. The porosity under high temperatures had an inverse relationship with the strength, and was significantly altered as the binder gel underwent additional formation, dehydration and crystallization.  相似文献   

8.
Resistance of alkali-activated slag concrete to acid attack   总被引:2,自引:0,他引:2  
This paper presents an investigation into the durability of alkali-activated slag (AAS) concrete exposed to acid attack. To study resistance of AAS concrete in acid environments, AAS concrete was immersed in an acetic acid solution of pH=4. The main parameters studied were the evolution of compressive strength, products of degradation, and microstructural changes. It was found that AAS concrete of Grade 40 had a high resistance in acid environment, superior to the durability of OPC concrete of similar grade.  相似文献   

9.
介绍CO2汽提法尿素装置合成系统的NH3/CO2的控制方法,合成系统NH3/CO2异常的症状,判断方法,偏离正常时的处理和防范措施。  相似文献   

10.
This study investigates the effects of slag composition on the hydration activity of slag-blended cement (SBC) pastes. Synthetic slag samples were prepared by melting Al2O3-modified, municipal solid-waste incinerator (MSWI) fly ash. In addition to the original slag (containing 25.0% CaO and 17% Al2O3), two other synthetic slag types, A1 and A2 slag, were prepared, having a 15% or 5% Al2O3 content, respectively. These synthetic slags were blended with ordinary Portland cement (OPC) at weight ratios ranging from 10% to 40%. The results indicate that the incorporation of 10% A1 slag tended to enhance the degree of hydration in SBC pastes during the early ages (3-28 days), but at later ages, significant difference in the degree of hydration between the OPC and SBC pastes with 10% A1 slag was not observed. The tendency of the 10% A2 slag case was similar, but with a limited enhancement during the early ages (3-28 days). However, samples that incorporated the Al2O3-modified slag (AMS) showed decreased degrees of hydration. The degree of hydration of the 40% blend ratio sample decreased significantly.  相似文献   

11.
Uncaptured fly ash and/or suspended solids from wet flue gas desulfurization (WFGD) scrubbing solutions are one of several factors that will influence the performance and robustness of carbon dioxide capture systems in coal-fired power plants which will be installed prior to the exhaust stack. In this study, a 100 mm ID packed column scrubber was tested with different concentrations of ash in various chemical solutions to evaluate the influence of solids on the fluid dynamics of the packing material. Data reported here are collected from three solutions including water, 30 wt% MEA (monoethanolamine), and 20 wt% potassium carbonate. The packing selected for this study was a 16 mm polypropylene pall rings. Compressed air was used to simulate flue gas at near ambient temperature and pressure.  相似文献   

12.
The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 °C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.  相似文献   

13.
This paper presents a laboratory study on the properties of high-volume fly ash high-strength concrete incorporating nano-SiO2 (SHFAC). The results were compared with those of control Portland cement concrete (PCC) and of high-volume fly ash high-strength concrete (HFAC). Assessments of these concrete mixes were based on short- and long-term performance. These included compressive strength and pore size distribution. Significant strength increases of SHFAC compared to the high-volume fly ash high-strength were observed as early as after 3 days curing, and improvements in the pore size distribution of SHFAC were also observed. In this work, the hydration heat of nano-SiO2 fly ash cement systems was also studied in comparison to the fly ash-cement systems and to the pure cement systems. In addition, the weight change of fly ash incorporating nano-SiO2, fly ash, and nano-SiO2 alone after immersed in saturated lime solution was also studied.  相似文献   

14.
CO2 capture using some fly ash-derived carbon materials   总被引:1,自引:0,他引:1  
A. Arenillas 《Fuel》2005,84(17):2204-2210
Adsorption is considered to be one of the more promising technologies for capturing CO2 from flue gases. For post-combustion capture, the success of such an approach is however dependent on the development of an adsorbent that can operate competitively at relatively high temperatures. In this work, low cost carbon materials derived from fly ash, are presented as effective CO2 sorbents through impregnation these with organic bases, for example, polyethylenimine aided by polyethylene glycol. The results show that for samples derived from a fly ash carbon concentrate, the CO2 adsorption capacities were relatively high (up to 4.5 wt%) especially at high temperatures (75 °C), where commercial active carbons relying on physi-sorption have low capacities. The addition of PEG improves the adsorption capacity and reduces the time taken for the sample to reach the equilibrium. No CO2 seems to remain after desorption, suggesting that the process is fully reversible.  相似文献   

15.
The work in hand presents the results of an experimental research on the effect of different precursors (binders) used in alkali-activated materials (AMM) and its composition (i.e. SiO2/Al2O3 molar ratio) on their sulfate durability. A reference matrix is formed from the activation of metakaolin (MK); this matrix was modified by the partial replacement of MK with either 20 wt% silica fume (SF) or 20 and 40 wt% blast furnace slag (BFS), so that the SiO2/Al2O3 molar ratio of calcium-free and calcium-rich AAM changed from 3.0 to 3.9. The properties assessed prior to the durability testing were: density (pycnometry), compressive strength, capillary sorption and oxygen permeability. The sulfate durability was investigated by exposing the matrices to a magnesium sulfate solution for 30, 90 and 180 days of attack, after which the residual compressive strength was determined. The reductions in strength after each period of testing were correlated with variations in the pH of the sulfate solutions and with geometry changes (expansion) measured in cylinders exposed to the durability tests. X-Ray diffraction was used to determine the minerals formed onto the surface of the samples after magnesium sulfate attack. The results show that the MK-based AAM present a higher resistance to magnesium sulfate attack. Furthermore, the partial replacement of MK with BFS is responsible for reductions in the mechanical properties after attack to sulfate. This is associated with the formation of ettringite and gypsum in the presence of calcium from BFS, besides the loss of alkalinity from the migration of alkali (Na+) to the solution.  相似文献   

16.
CO2—21世纪的新碳源   总被引:3,自引:0,他引:3  
本文对21世纪的一种新碳源CO  相似文献   

17.
Glass-ceramic from fly ash with added MgO and TiO2   总被引:1,自引:0,他引:1  
The effects of the addition of MgO and TiO2 to fly ash on the nucleation and crystal growth mechanisms of the derived glass are investigated with the aid of differential thermal analysis, dilatometry, X-ray diffraction and scanning electron microscopy (SEM). Phase separation occurs on heating the investigated glass. The glass-ceramic materials obtained contain anorthite (CaOAl2O32SiO2) and cordierite (2MgO2Al2O35SiO2) as the main crystalline phases. The morphology of the glass-ceramic material was investigated by SEM and it was consistent with the double-framework structure of the phase-separated glass and it was constituted by a low viscosity phase almost completely crystallised and high viscosity phase scarcely or not crystallised, depending on the heat-treatment.  相似文献   

18.
This study investigates the effect of mixing Type I, Type II, and Belite cements with municipal solid waste incinerator (MSWI) fly ash slag-blended cement (FASBC). The experimental results showed that a 10-40% slag replacement of by caused an increase in the initial and the final setting time. The toxicity characteristic leaching procedure (TCLP) results show that the heavy metal content met the Environmental Protection Administration (EPA) regulatory limits. From the results, it can be seen that the effect of the replacement of 10-40% of the cement by slag caused an increase in the initial and final setting time. Compressive strength results indicate that the slag-blended cement (SBC) pastes had slower compressive strength development in the early stages, but this strength obviously increased at later ages. Variations in the Portland cements can affect early strength development but have no significant effect on the degree of hydration at later ages. MSWI slag gives a relatively slower increase in early strength but may show a greater degree of reaction at later ages.  相似文献   

19.
《Cement and Concrete Research》2003,33(10):1567-1574
Mortars of blast furnace slag replaced with 10% of a geothermal silica waste were cured for 90 days. The binder was activated by 6 wt.% Na2O equivalent of NaOH and water glass. The presence of the silica enhanced the formation of hydration products as shown by nonevaporable water (NEW) results. Backscattered electron images indicated that the microstructures of blended slag had less porosity than those of neat slag mortars and the interfacial zone between aggregate and hydration products was dense and of homogeneous composition similar to the matrix of hydration products. The main hydration products were C-S-H and for NaOH a hydrotalcite type phase was found as finely intermixed with the C-S-H.  相似文献   

20.
This paper represents the experimental trials to activate blast-furnace slag to produce cementless binding materials. The aims of the work is to study the properties of activated slag mixed with sodium hydroxide and sodium silicate liquid 6 wt% of granulated slag. Also, studying the effect of mixing water (tap and sea water) on the kinetic of activation. The rate of activation of the alkali activated slag (AAS) has been studied by FTIR, TGA, DTG and SEM techniques. The results revealed that the increase of NaOH content and mixing with sea water increase the combined water up to 90 days. On the other hand, the bulk density and compressive strength was increased by increasing Na2SiO3 content in presence of NaOH. The activated granulated slag showed good durability in sea water, i.e., the compressive strength increased gradually with immersing time up to 12 months. Whereas, the strength of sulfate resisting cement (SRC) pastes immersed in sea water increases up to 6 months then decreases up to one year. Therefore, it can be concluded that alkali activated slag are more durable in sea water than SRC pastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号