首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium titanate (Li2TiO3) is one of the promising candidate breeders for tritium self-sufficiency of deuterium(D)-tritium(T) fusion reaction. The differences in powder synthesis methods have a great impact on the properties of Li2TiO3 powders and the performance of Li2TiO3 ceramic pebbles. In this study, the Li2TiO3 powders were successfully synthesized by hydrothermal method and solid-state method, and then the pebbles were fabricated by the agar-based wet method. The mechanism of hydrothermal synthesis of Li2TiO3 powder was discussed. For the hydrothermal method, the Li2TiO3 powder with single phase can be obtained when the rate of Li/Ti = 2.4, and the powder presented two different morphology, which involved two reaction mechanisms, including in-situ phase transformation mechanism and dissolution-precipitation mechanism, the phase transformation from α-Li2TiO3 to β-Li2TiO3 accomplished at 400°C, which is lower than that of 750°C for solid-state method. Li2TiO3 pebbles prepared by the hydrothermal-wet method had a uniform pore distribution, an optimal grain size of 2.7 μm, a crushing load of 58.6 N, and relative density of 90.2%, respectively. In comparison, pebbles prepared by the solid-state-wet method also had better mechanical properties, which the crushing load and relative density were 53.9 N and 86.9% respectively under the optimal fabrication conditions.  相似文献   

2.
In this paper, a method combining hydrolysis of tetrabutyl orthotitanate (TBOT) and solvothermal reaction was first used to fabricate nanostructured Li2TiO3 tritium breeder ceramic pebbles. Initially, superfine nanostructured Li2TiO3 powders were synthesized with average particle size of about 10?nm, according to TEM. The surface area of precursor particles synthesized via this method was found to be 115.85?m2/g by BET analysis, which is much larger than that of the product obtained using traditional methods. The results showed that precursor particles had high sintering activity. XRD pattern revealed that the phase transition temperature for monoclinic phase Li2TiO3 prepared by this method was nearly 450?°C, which was the lowest phase transition temperature reported among all wet chemical methods to date. Subsequently, investigation of ceramic sintering demonstrated that Li2TiO3 ceramic pebbles with desired nano-crystalline sizes (27.98 ~ 55.03?nm) were obtained by sintering at 500 ~ 600?°C for 4?h. The possible mechanisms were proposed based on the reaction processes of TBOT hydrolysis, solvothermal reaction and sintering.  相似文献   

3.
《Ceramics International》2020,46(4):4167-4173
A novel mass production method of lithium titanite (Li2TiO3) tritium breeder ceramic pebbles using polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) assisted granulation method (APG) was proposed. A binder solution of polyvinyl alcohol (PVA) was used to modify the Li2TiO3 precursor powder. The powders with adhesive properties were prilled to form green pebbles (GPs) by spheronization at a low rotation speed and spraying with polyvinyl pyrrolidone (PVP), in several cycles. Then, the density and the crush load of the GPs were improved by high-speed rolling. Finally, the ceramic pebbles were produced by sintering. The phase, the microstructure, and the crush load of the ceramic pebbles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and with a universal tester, respectively.  相似文献   

4.
Li2TiO3 is considered as one of the best candidates for breeding materials. This article adopted a modification water-based sol–gel method to synthesize nano-Li2TiO3 powders, which overcomes the poor phase purity, coarse grain, and inferior crushing strength described in the previous literature. In this paper, the thermal effect of the precursor, the crystal phase, and the morphology of the powders were characterized by thermogravimetric analysis/differential thermal analysis (TG/DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The nano-structured Li2TiO3 powders with good dispersion and an average particle size of 20–50 nm were successfully synthesized at 600°C by controlling PH and hydrolysis rate. Moreover, the phase transition temperature for the monoclinic phase β-Li2TiO3 was as low as 600°C, which is lower than 750°C using the traditional solid-state method. Meanwhile, the morphology, porosity, crushing load, and thermal conductivity of ceramic pebbles are characterized systematically by using scanning electron microscope (SEM), mercury injection meter, compression strength equipment, and laser scattering method, respectively. Experimental results showed that the Li2TiO3 ceramic pebbles with a sphericity of .98, crush load of 48.4 N, and relative density of 90.03 % were successfully prepared at 1050°C for 2 h. This method will provide new guidance for the preparation of tritium breeders.  相似文献   

5.
A large amount of Li-containing ceramic breeder pebbles is packed in the solid breeding blanket of a nuclear fusion reactor. Several pebble fabrication technologies have been proposed in previous studies, including wet process, emulsion method, extrusion spheronization, additive manufacturing, and melt process. However, a simple, energy-effective, and scalable fabrication technology remains to be developed for the automated mass production and reprocessing of used radioactive pebbles post-operation. Selective laser melting potentially enables the quick and automated fabrication of breeder pebbles. Herein, we employ a high-power density pulse laser to produce ceramic breeder pebbles. A pulsed YAG laser was irradiated over a lithium metatitanate (Li2TiO3) powder bed in air, and the corresponding temperature was monitored using fiber-type infrared pyrometers. Spherical Li2TiO3 pebbles were successfully fabricated in a single step with an average diameter of 0.78 ± 0.13 μm and the sintering density of 87.4% ± 5.6% (input power: 7.9 J/pulse). The irradiated Li2TiO3 powder melted and turned spherical under surface tension and rapidly solidified, resulting in uniaxial fine grains and a decrease in the degree of long-range cation ordering.  相似文献   

6.
The effect of different amount of Li2TiO3(LT) (0–15?wt%) addition on the properties of composite Li4SiO4 (LS) ceramic pebbles were studied. The Li4SiO4-Li2TiO3 composite powder was prepared in-situ using solid state method at a calcination temperature as low as 800?°C. The composite pebbles were fabricated using a cost-effective and simple technique called extrusion-spherodization. The sintered pebbles were characterized for density, grain size, pore size distribution, crush load and moisture stability. The density of Li4SiO4 composite pebbles was improved for LS-5?wt% LT in comparison to LS pebbles when fired at 1000?°C. Moreover, the LS grain size in the composite pebbles was reduced (5.8?μm) in comparison to LS pebbles. We also found that the average crush load value of the LS-5?wt%LT composite pebbles had been improved by nearly 100% (33?N) to that of the pure LS pebbles (17?N). The LS-5?wt% LT pebbles showed improvement in stability to moisture.  相似文献   

7.
Li2TiO3 is a vital candidate breeder to solve tritium self-consistency of fusion reaction. In this study, Digital Light Processing (DLP) based on Stereolithography technology was used to fabricate Li2TiO3 pebbles for the first time. Ceramic suspensions with different solid loadings were prepared by mixing modified Li2TiO3 powder with UV-curable premixture. The size error of Li2TiO3 green pebbles was corrected by adjusting the deformation factor of equatorial radius, and the Li2TiO3 green pebbles were successfully fabricated with an accurate size. After sintering processing, the Li2TiO3 pebbles with a uniform diameter of 1.5 mm and better sphericity of 1.01 were yielded. The sintering behavior of Li2TiO3 pebbles were investigated. Results showed that the Li2TiO3 pebbles formed with 35 vol% solid loading, and sintered at 1050 ℃ had a uniform pore distribution, and also had optimal properties, such as high relative density of 93.6 %TD, and prominent crush load of 92.3 N.  相似文献   

8.
《Ceramics International》2021,47(19):26978-26990
In this work, a method combining the spray-drying process and rolling ball method was first selected to mass fabricate Li2TiO3 tritium breeder ceramic pebbles. Herein, we overcome the issues namely complex production, high manufacturing cost, and lower mechanical strength in previous reports. The Li2TiO3 powder with high packing density after the spray drying process will self-agglomerate to form denser structured pebbles during the rolling ball process assisted by sesbania gum binder solution. The stability of slurry, different binder, binder concentrations, the formation mechanism, and the morphology of green pebbles were investigated by using viscometer, SEM. Moreover, the force on the Li2TiO3 green pebbles was also analyzed during the rolling ball process. After the debinding and densification process, the Li2TiO3 pebbles have a uniform diameter of 1.2 mm and good sphericity of 0.97. The Micro-CT instrument showed that the internal structure of the Li2TiO3 pebbles was dense. The experiment's confirmation shows that the Li2TiO3 ceramic pebbles sintered at 1000 °C have optimal mechanical properties such as a crushing load of 108 N and relative density of 92.4%TD, which is much larger than that of the pebbles obtained using traditional methods. This work not only overcomes the core-shell structure but also provides a new platform for better mechanical properties for studying the other materials systems in the future.  相似文献   

9.
《Ceramics International》2019,45(14):17114-17119
Lithium metatitanate (Li2TiO3) ceramic pebbles were fabricated from the powder synthesised via low-temperature solid-state precursor method. Solid H2TiO3 and LiOH·H2O react chemically during ball milling process to form a nano-sized precursor powder. Pure β-Li2TiO3 powder can be obtained by calcining the precursor powder at 500 °C, which is half the temperature of conventional solid-state method. The synthesis process is simple and low-cost, which would be more available to achieve batch production among all feasible techniques. The low-temperature calcination will effectively avoid hard particle aggregates and poor sinterability caused by high-temperature heat treatment, which is conducive to prepare ceramics with good properties. The results show that the powder exhibits high sinterability with small particle size of 19 nm. The Li2TiO3 ceramic pebbles sintered at 800 °C have small grain size (470 nm), high relative density (83%) and good crush load (45 N), which has great potential as tritium breeding materials for fusion reactors.  相似文献   

10.
The bi-phase Li2TiO3–Li4SiO4 ceramic pebbles have been considered a promising breeder to realize the tritium self-sustainment in the blanket. However, up to now, the reported ceramic pebbles have the disadvantages of low yield, poor crushing load, and loose internal structure, which cannot meet the practical application requirements. In this work, the Li2TiO3–Li4SiO4 ceramic pebbles with excellent mechanical properties were fabricated successfully via the centrifugal granulation method with the assistance of introducing a spray-drying process, simulating particle trajectory by discrete element software and improving bonding interface between core and shell with ethylene glycol. The composition, microstructure, and inner structure of the Li2TiO3–Li4SiO4 ceramic pebbles were investigated, respectively, through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray computed tomography (CT). It can be found that the employment of the ethylene glycol solution on the surface of Li2TiO3 can make the core and the shell combine well. Moreover, the effect of the rolling speed of the Li2TiO3–Li4SiO4 ceramic pebbles was investigated via discrete element method (EDEM) simulation and experiments. The experimental results displayed that the Li2TiO3–Li4SiO4 ceramic pebbles sintered at 1100°C for 2 h have a uniform diameter of 1 mm, a good sphericity of 0.97, and an excellent crushing load of 82.4 N, which are superior to those pebbles that obtained by using the traditional wet methods. Moreover, the CT results showed that the appropriate porosity of the core was 3.21% and of the shell was 10.73%. Therefore, the simple centrifugal granulation method can be applied to prepare the Li2TiO3–Li4SiO4 ceramic pebbles in a large scale and shed a light to investigate the relevant advanced biphasic tritium breeder materials in the future.  相似文献   

11.
Li4SiO4 has been widely studied as attractive tritium breeding materials due to its innate merits. Considering the potential advantages of nanostructure in tritium breeding materials, a distinctive process was developed to obtain nanostructured Li4SiO4 pebbles. In brief, ultrafine precursor powders were synthesized by solvothermal method without using surfactants, and then indirect wet method was adopted to generate the green spheres with homogeneous microstructure. After that, the suitable sintering conditions were defined by studying the effects of sintering parameters on the grain size evolution, and nanostructured Ti-doped Li4SiO4 pebbles were first obtained by two-step sintering method. This study will be expected to provide references for fabricating other Li-based tritium breeding materials.  相似文献   

12.
《Ceramics International》2022,48(5):6393-6401
As an excellent promising tritium breeding material, Li2TiO3 ceramic pebbles will be required in large quantities in the future. For this reason, a fully automatic pneumatic eject device based on an improved wet process was employed in the mass-preparation of Li2TiO3 ceramic pebbles. The operating principle of the equipment, the preparation process parameters and the performance of the Li2TiO3 ceramic pebbles have been studied. The results showed that the spheroidization and solidification process of slurries droplets in the molding medium were critical to the sphericity of pebbles, and the size of the green pebbles was related to the droplet dropping speed、the control pressure and the nozzle inner diameter. It is revealed that more than 90% of the pebbles had an eccentricity of less than 1.1, and the diameter distribution was concentrated between 0.98 mm and 1.03 mm. The Li2TiO3 ceramic pebbles with the average grain size of 3.7 μm, the crushing load of 67 N, the relative density of 85.6%, and the porosity of 19.96% can be obtained after sintered at 1100 °C for 2 h. Also, the average pore size was 1.3 μm and the distribution was relatively concentrated. Therefore, this method is expected to meet the future demands of Li2TiO3 ceramic pebbles with excellent performance in bulk quantity.  相似文献   

13.
《Ceramics International》2017,43(7):5680-5686
Nanostructured Li2TiO3 ceramics which may have effective thermal conductivity, excellent tritium release behaviour and good irradiation resistance are regarded as a promising solid tritium breeding material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER). However, due to the limitations of the preparation technology, reports concerning Li2TiO3 nanoceramics have been rare. In this paper, uniform nano-Li2TiO3 powder particles which were essential to obtain nanostructured Li2TiO3 ceramics pebbles were synthesised via a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method, and then rare, homogeneous nanostructured Li2TiO3 ceramic pebbles were fabricated with the as-prepared powder particles. The mechanisms by which CTAB can reduce particle agglomeration and be of assistance in achieving a nanostructured Li2TiO3 ceramic were also investigated. In addition, systematic experiments on the relationship between the added amount of CTAB and the mechanical properties of the Li2TiO3 ceramic structure were also carried out. The results revealed that the desired Li2TiO3 nanoceramic could be fabricated when 3% CTAB was introduced, as the Li2TiO3 pebbles obtained had a small grain size (90 nm), high relative density (89.71%T.D.) and crush load (99.93 N), which were expected to show favourable potential as a promising tritium breeder material in the fusion reactor blanket.  相似文献   

14.
《Ceramics International》2016,42(8):10014-10020
Li4SiO4 pebbles have been widely studied as attractive tritium breeding materials in the fusion reactor blanket of international thermonuclear experimental reactor (ITER). In this work, surfactant-assisted hydrothermal method was first employed to prepare ultrafine ceramic powders for fabricating attractive Li4SiO4 pebbles. SEM analysis revealed that the introduction of sodium dodecyl sulfate could eliminate the particle aggregation to prepare monodispersed precursor powders, and thus generated the green bodies of pebble with homogeneous microstructure, which was helpful to eventually obtain high-quality Li4SiO4 pebbles. Moreover, the effects of sintering temperature on the grain size, relative density, and crush load of Li4SiO4 pebbles were also investigated. Li4SiO4 pebbles sintered at 700 °C had a high crush load (average value 27.39 N), small grain size (average value 0.57 μm), satisfactory density (88.13%T.D.) and abundant pore structure, which were expected to show favorable tritium release behavior as a promising tritium breeding material for fusion reactor blanket.  相似文献   

15.
This study aims to fabricate Li2Mg3TiO6 ceramics with ultrafine grains using a novel cold sintering process combined with a post-annealing treatment at a temperature <?950?°C. In this study, phase composition, sintering behavior, microstructure evolution, and microwave dielectric properties of the resultant nanocrystalline ceramics were investigated for the first time. The as-compacted green pellets at 180?°C yielded a high relative density of ~ 90% and the ceramics that were post-sintered over a broad temperature range (800–950?°C) possessed highly dense microstructure with a relative density of ~ 96%. The average grain size varied from 100 to 1200?nm for the samples sintered at 800–950?°C. Furthermore, the quality (Q × f) values of the obtained specimens exhibited a strong positive dependency on the grain size, which increased from 17,790 to 47,960?GHz for grain sizes ranging between 100 and 1200?nm, while the dielectric permittivity (εr) and temperature coefficient of the resonant frequency (τf) values did not undergo any significant changes over this range of grain size.  相似文献   

16.
The effect of BaCu(B2O5) (BCB) addition on the sintering temperature and microwave dielectric properties of 2.5ZnO-0.2SnO2-4.8TiO2-2.5Nb2O5 (ZSTN) has been investigated by the solid-state ceramic route. X-ray diffraction and scanning electron microscopy techniques were used to analysis the structure and microstructure. The microwave dielectric properties were measured by the resonance method. It was found that the addition of BCB can effectively lower the sintering temperature from 1100 °C to 900 °C, and improves the microwave dielectric properties of ZSTN ceramics. The BCB doped ZSTN ceramics can be compatible with Ag electrode, which makes it a promising ceramic for LTCC technology application.  相似文献   

17.
《Ceramics International》2020,46(2):1816-1823
Synthesis of fine Li2TiO3 powders via low-temperature solid-state reaction (LTSSR) was studied. Solid Li2CO3 and H2TiO3 were blended by planetary ball mill with deionized water as medium. Calcination of the milled powder at low temperature of 500 °C resulted in the formation of pure Li2TiO3 nanoparticles. Another Li2TiO3 powder was also prepared by the conventional solid-state reaction (SSR) and a good comparison between different routes was realized. The results show that the particle size of LTSSR powder is significantly decreased to 19.6 nm while the one obtained by SSR is 146.6 nm. Low temperature calcined powders have less agglomeration and higher sinterability, which can be sintered at lower temperature. Pebbles sintered from the LTSSR powders at 750 °C exhibit small grain size (650 nm), high relative density (85.1%) and satisfactory crush load (42.8 N), whereas the SSR pebbles can only be sintered above 950 °C with the relative density close to 80%. Besides, the LTSSR samples also have a higher conductivity at room temperature, indicating the lower tritium diffusion barrier in ceramics. It is confirmed that H2TiO3 rather than TiO2 is more appropriate for the solid-state reaction to produce Li2TiO3 powders with nano-size particles and favorable properties.  相似文献   

18.
Ultrafine lithium titanate (Li2TiO3) powder was synthesized by hydrothermal method. The phase formation and transition condition among α, β, and γ-Li2TiO3 were discussed. XRD and ICP-AES showed the single α-phase was formed at 180 °C with 2 h hydrothermal reaction, and it transited into β-phase at 400 °C. SEM observation and EDS analysis confirmed the dissolution of TiO2 and the formation of α-Li2TiO3 proceeded simultaneously with preferable growth direction of (-133) lattice. During the phase transition, the powder maintained the small crystallite, which facilitated the fabrication of Li2TiO3 bulk with small grain size. After the Ar+ irradiation, the surface region to the depth of 3 μm of Li2TiO3 ceramic was affected, where the decrease of crystallization and disturbance of short-range order were confirmed by GIXRD and Raman spectroscopy. In spite of the structure change at the surface area, the ceramic bulk maintained the same.  相似文献   

19.
Li4SiO4 and Li2TiO3 have long been recognized as two excellent promising tritium breeding materials. In this paper, two kinds of ceramic pebbles, Li4SiO4 pure phase ceramic pebbles and Li4SiO4-xLi2TiO3 multiphase ceramic pebbles were prepared by a melt spraying method at a superheating temperature of 100 ℃ and then tested for their performance. The proportion of pebbles with a particle diameter of 0.8∼1.2 mm reached the maximum of 24.02 % when the spraying pressure is 0.04 MPa. The surface of the pebbles prepared by the spraying method was smooth, and the surface roughness was reported for the first time to reach 2.039 μm. The sphericity reached 1.027. When the Ti/Si molar ratio was 0.5, the crush load of the pebbles after heat treatment reached 71.6 N and the thermal conductivity of the materials reached its maximum of 3.098 W/(m·K) at 700 ℃.  相似文献   

20.
Li2TiO3 ceramic powders have been developed by a solid state reaction method and those have been sintered at four different temperatures (600 °C, 700 °C, 800 °C and 900 °C) towards the optimization of sintering temperature that has been found to be at 800 °C based on the nature of the XRD profiles. The sample sintered at 800 °C has shown a good crystallinity situation from its XRD peaks and the sample is found to be in monoclinic structure which is in accordance with the reported data of JCPDS 33-0831. The SEM images for samples sintered at 600 °C, 700 °C, 800 and 900 °C, EDAX peaks, FTIR profile have been measured for the temperature optimized (800 °C) sample for understanding the structural details of Li2TiO3 ceramic powders. Besides these, dielectric constant, dielectric loss and a.c. conductivities have been measured for the temperature optimized sample. In order to strengthen the observations made in the XRD profiles at four different temperatures, Raman spectra of those four sintered ceramic powders have also been studied. In respect of the thermal properties, only for the as synthesized (precursor) sample, simultaneous measurement of TG-DTA profiles has been carried out for analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号