首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium-substituted LiMnPO4/C/reduced graphene oxide (LNMP@rGO) was synthesized in this study via freeze drying and carbon thermal reduction method with graphene oxide as carbon source. Sodium ion doping is optimized and rGO effects are evaluated by XRD, SEM, TEM, BET, Raman, and electrochemical performance measurements. Well-distributed nanoparticles with average size of ~50?nm are evenly distributed on the surface or intercalation between rGO layers, resulting in a porous ion/electronic conductive network. Compared to 122.3?mA?h?g?1 in unmodified LNMP, the best LNMP@rGO (20?mg rGO) exhibits an excellent initial discharge capacity of 150.4?mA?h?g?1 at 0.05?C at 122.9% of the initial capacity. The capacity retention rate is 95.8% of the initial capacity after 100 cycles at 1?C. Capacity of 101.2?mA?h?g?1 is preserved even at rates as high as 10?C.  相似文献   

2.
V2O3 is a promising anode material and has attracted the interests of researchers because of its high theoretical capacity of 1070?mAh?g?1, low discharge potential, inexpensiveness, abundant sources, and environmental friendliness. However, the development and application of V2O3 have been hindered by the low conductivity and drastic volume change of V2O3 composites. In this work, V2O3/reduced graphene oxide (rGO) nanocomposites are successfully prepared through a facile solvothermal method and annealing process. In this synthesis protocol, V2O3 nanoparticles (NPs) are encapsulated by rGO. This unique structure enables rGO to inhibit volume changes and improve the ion and electronic conductivity of V2O3. In addition, V2O3 NPs, which exhibit sizes of 5–40?nm, are uniformly dispersed on rGO sheets without aggregation. The Li+ storage behavior of V2O3/rGO is systematically investigated in the potential range 0.01–3.0?V. The V2O3/rGO nanocomposite can achieve a high reversible specific capacity of 823.4?mAh?g?1 under the current density of 0.1?A?g?1, and 407.3 mAh g?1 under the high current density of 4.0?A?g?1. The results of this study provide insight into the fabrication of rGO-based functional materials with extensive applications.  相似文献   

3.
The ordered mesoporous Co3O4 nanospheres encapsulated with reduced graphene oxide (denoted as meso-Co3O4 / RGO) were synthesized via electrostatic interaction and firstly for the electrochemical detection of rutin with good sensing effects. The resultant meso-Co3O4 / RGO nanocatalyst not only possesses more active sites due to the high surface area deriving from the mesoporous structure, but also has benign conductibility due to the presence of RGO, both of which enhance the sensing properties for the electrochemical detection of rutin. The developed sensor displays low detection limit (0.03?μM) and large sensitivity (74.85?μA?μM?1 cm?2). Besides, the rutin sensor possesses good selectivity, stability and reproducibility.  相似文献   

4.
A three-dimensional ordered macroporous (3DOM) cobalt ferrite (CoFe2O4) was prepared using polystyrene (PS) colloidal crystal template. The scanning electron microscopy (SEM) and the transmission electron microscopy (TEM) micrographs showed that the as-prepared CoFe2O4 material had a typical 3DOM structure, which was constructed with about 130 nm-sized macropores and 10-20 nm-sized walls. The obtained CoFe2O4 material had a specific surface area of 66.67 m2 g−1, and could deliver a relatively high capacity of 702 mAh g−1 (about double that of graphite) at a current density of 0.2 mA cm−2 after 30 cycles. Owing to the 3DOM nanoarchitecture, the as-prepared CoFe2O4 electrode exhibited a good rate performance. The results suggest a promising application of the 3DOM CoFe2O4 as anode material for lithium ion batteries.  相似文献   

5.
《Ceramics International》2020,46(7):9249-9255
Nowadays, Lithium-ion batteries (LIBs) are prevalently applied in numerous areas, leading to increasing demand of innovative electrodes with high specific capacities. An advanced CuGeO3/reduced graphene oxide (rGO) structure is designed and fabricated as the anode material taking the advantage of considerable capacity offered by CuGeO3 and stable framework constructed by rGO. The as-prepared CuGeO3 with 30 wt% GO addition exhibits the best electrochemical performance. Specifically, a reversible charge capacity of 909 mAh·g−1 with high coulombic efficiency of 91.49% at the current density of 100 mA g−1 after 200 cycles is demonstrated, and the rate capacity retains 747.6 mAh·g−1 with 91.59% capacity retention. These results indicate that the CuGeO3/rGO composite holds great potential in next-generation LIBs.  相似文献   

6.
A free-standing SnO2/reduced graphene oxide (re-G) hybrid paper has been successfully fabricated by a facile vacuum filtration approach through a uniformly dispersed SnO2 nanoparticle and graphene oxide mixed solution. As potential anode material for high power and energy applications, the hybrid nanostructures were directly evaluated as anode for rechargeable lithium ion batteries without adding any polymer binder, conductive additives or current collectors. And the composite exhibits a greatly enhanced synergic effect with extremely high energy storage stability of 700 mAh g−1 after 100 cycles benefiting from the advanced structural features.  相似文献   

7.
《Ceramics International》2017,43(15):11556-11562
The ternary composite, carbon coated hollow ZnSnO3 (ZS@C) cubes encapsulated in reduced graphene oxide sheets (ZS@C/rGO), was synthesized via low-temperature coprecipitation and colloid electrostatic self-assembly. The uniform carbon-coating layer not only plays a role in buffering the volume change of ZnSnO3 cubes in the charging/discharging processes, but also forms three-dimensional network with the cooperation of graphene to maintain the structural integrity and improve the electrical conductivity. The results show that the reduced graphene oxide sheets encapsulated ZS@C microcubes with a typical core-shell structure of ~700 nm in size exhibit an improved electrochemical performance compared with bare ZS@C microcubes. The ZS@C/rGO electrode delivered an initial discharge capacity of 1984 mA h g−1 at a current density of 0.1 A g−1 and maintained a capacity of 1040 mA h g−1 after 45 cycles. High specific capacity and superior cycle stability indicate that the ZS@C/rGO composite has a great potential for the application of lithium-ion anode material.  相似文献   

8.
Self-assembly of nanosized materials has been extensively studied for the assemblies usually exhibit novel properties and show potential applications in many fields. However, there are few studies about the self-assembly behavior during the formation of 3D architectures. Herein, interesting self-assembly of ultrathin α-Fe2O3 nanorods into micrometer-scale flakes or rods is exhibited during the formation of single walled carbon nanotube hydrogel network. The results show that this self-assembly is driven by oriented attachment mechanism with the assistance of surfactant acting as a template and 3D hydrogel structure as confined space. Benefitting from the 3D porous and interpenetrated structure, improved electron transfer network and increased active facets of Fe2O3, an initial charge capacity is high as 891?mAh/g and 73% could be retained after 200 cycles. While great rate capability (42% preserved at 1000?mA/g) are also demonstrating its potential for applications in lithium ion batteries.  相似文献   

9.
In this paper, Li4Ti5O12 (LTO) hollow microspheres with the shell consisting of nanosheets have been synthesized via a hydrothermal route and following calcination. Because of the favorable transport properties of this hollow structure, it is the rate performance at high current densities which is exceptional. When the LTO hollow microspheres were used as the anode material in lithium ion battery, they exhibited superior rate performance and high capacity even at a very high rate (131 mAh g−1 at 50 C).  相似文献   

10.
Nanosized α-Fe2O3 (ca. 50 nm) and Li-Fe composite oxides (ca. 29 nm) powders were synthesized via gel polymer route. The gels were obtained with thermal polymerization of acrylic acid solutions of iron and lithium nitrates. The calcination of these gels at temperatures from 300 °C to 500 °C results in α-Fe2O3 from Fe(NO3)3 precursor and Li-Fe composite oxides Li2O-Fe3O4-LiFeO2 from a mixed precursors of Fe(NO3)3 and LiNO3. Thermal gravimetric analysis, X-ray diffraction and transmission electron microscopy were used to investigate the precursors and products. The electrochemical performance of the Fe-based oxides was also evaluated. After 200 cycles, their capacity can be as high as 1300 mAh/g for α-Fe2O3 and 1400 mAh/g for Li-Fe oxide while the initial capacity loss is as low as 21.8%. The Li-Fe oxide electrodes exhibit better capacity retention than the α-Fe2O3 electrodes. They are interesting negative electrodes for high energy density lithium-ion batteries.  相似文献   

11.
In our previous work, 10 Wh-class (30650 type) lithium secondary batteries, which were fabricated with LiNi0.7Co0.3O2 positive electrodes and graphite-coke hybrid carbon negative electrodes, showed an excellent cycle performance of 2350 cycles at a 70% state of charge charge-discharge cycle test. However, this cycle performance is insufficient for dispersed energy storage systems, such as home use load leveling systems. In order to clarify the capacity fade factors of the cell, we focused our investigation on the ability discharge capacity of the positive and negative electrodes after 2350 cycles. Although the cell capacity deteriorated to 70% of its initial capacity after 2350 cycles, it was confirmed that the LiNi0.7Co0.3O2 positive electrode and graphite-coke hybrid negative electrode after 2350 cycles still have sufficient ability discharge capacity of 86 and 92% of their initial capacity, respectively. Accompanied by the result for a composition analysis of the positive electrode material by inductively coupled plasma (ICP) spectroscopy and atomic absorption spectrometry (AAS), electrochemical active lithium decreased and the LixNi0.7Co0.3O2 positive electrode could be charged-discharged in a narrow range of between x=0.41 and 0.66 in the battery, although it had enough ability discharge capacity that can use between x=0.36 and 0.87. It is predicted that solid electrolyte interface formation by electrolyte decomposition on the carbon negative electrode during the charge-discharge cycle test is a main factor of the decrease of electrochemical active lithium.  相似文献   

12.
《Ceramics International》2017,43(14):10905-10912
Herein, a MnFe2O4/graphene (MnFe2O4/G) nanocomposite has been synthesized via a facile N2H4·H2O-induced hydrothermal method. During the synthesis, N2H4·H2O is employed to not only reduce graphene oxide to graphene, but also prevent the oxidation of Mn2+ in alkaline aqueous solution, thus ensuring the formation of MnFe2O4/G. Moreover, MnFe2O4 nanoparticles (5–20 nm) are uniformly anchored on graphene. MnFe2O4/G electrode delivers a large reversible capacity of 768 mA h g−1 at 1 A g−1 after 200 cycles and high rate capability of 517 mA h g−1 at 5 A g−1. MnFe2O4/G holds great promise as anode material in practical applications due to the outstanding electrochemical performance combined with the facile synthesis strategy.  相似文献   

13.
Conductive carbon has been coated on the surface of LiNi0.5Mn1.5O4 cathode material by the carbonization of sucrose for the purpose of improving the rate performance. The effect of carbon coating on the physical and electrochemical properties is discussed through the characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), cycling and rate tests. Results demonstrate that the carbon coating can greatly enhance the discharge capacity, rate capability and cycling stability of the LiNi0.5Mn1.5O4 without degrading the spinel structure. The sample modified with 1 wt.% sucrose displays the best performance. A large capacity of 130 mAh g−1 at 1 C discharge rate with a high retention of 92% after 100 cycles and a stable 114 mAh g−1 at 5 C discharge rate can be delivered. The remarkably improved rate properties of the carbon-coated samples are due to the suppression of the solid electrolyte interfacial (SEI) layer development and faster kinetics of both the Li+ diffusion and the charge transfer reaction.  相似文献   

14.
A nanostructured ternary transition metal oxide, ZnFe2O4, is synthesized via the simple polymer pyrolysis method. The characteristics of the material are examined by thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical test results show that this method of ZnFe2O4 synthesis produces high specific capacities and good cycling performance, with an initial specific capacity as high as 1419.6 mAh g−1 at first discharge that is maintained at over 800 mAh g−1 even after 50 charge–discharge cycles. The electrode also presents a good rate capability, with a high rate of 4C (1C = 928 mA g−1), a reversible specific capacity that can be as high as 400 mAh g−1. ZnFe2O4 is a potential alternative to high-performance nanostructured anode material in lithium ion batteries.  相似文献   

15.
The dandelion-like V2O3/C composite was synthesized by a simple and facile template-free solvothermal method followed by a suitable thermal treatment. The dandelion-like V2O3/C composite is constructed by bicontinuous 3D hierarchical structures, which are formed by interconnected nanoparticles and interconnected pores, respectively. Moreover, the surface of interconnected nanoparticles is uniformly coated with an ultrathin carbon layer. Upon evaluation as an anode material for LIBs, the as-synthesized product shows superior electrochemical performance. Under the current density of 0.1?A?g?1, the specific discharge capacity of V2O3/C composite is 737?mA?h?g?1 after 100 cycles. Moreover, after 1000 cycles at a high current density of 2?A?g?1, the sample exhibits a discharge capacity of 315?mA?h?g?1 which is 94% of the first-cycle discharge capacity. This excellent electrochemical performance can be ascribed to its unique hierarchical structure with 3D interconnected nanopores and uniform carbon coating.  相似文献   

16.
《Ceramics International》2017,43(13):9630-9635
Transition metal sulfides have been proved as promising candidates of anode materials for sodium-ion batteries (SIBs) due to their high sodium storage capacity, low cost and enhanced safety. In this study, the amorphous CoS nanoparticle/reduced graphene oxide (CoS/rGO) composite has been fabricated by a facile one-step electron beam radiation route to in situ decorate amorphous CoS nanoparticle on the rGO nanosheets. Benefiting from the small particle size (~2 nm), amorphous structure, and electronic conductive rGO nanosheets, the CoS/rGO nanocomposite exhibits high sodium storage capacity (440 mAh g−1 at 100 mA g−1), excellent cycling stability (277 mAh g−1 after 100 cycles at 200 mA g−1, 79.6% capacity retention) and high rate capability (149.5 mAh g−1 at 2 A g−1). The results provide a facile approach to fabricate promising amorphous and ultrafine metal sulfides for energy storage.  相似文献   

17.
Glass–ceramic Li2S–GeS2–P2S5 electrolytes were prepared by a single step ball milling (SSBM) process. Various compositions of Li4−xGe1−xPxS4 from x = 0.70 to x = 1.00 were systematically investigated. Structural analysis by X-ray diffraction (XRD) showed gradual increase of the lattice constant followed by significant phase change with increasing GeS2. All-solid-state LiCoO2/Li cells were tested by constant-current constant-voltage (CCCV) charge–discharge cycling at a current density of 50 μA cm−2 between 2.5 and 4.3 V (vs. Li/Li+). In spite of the high conductivity of the solid-state electrolyte (SSE), LiCoO2/Li cells showed a large irreversible reaction especially during the first charging cycle. Limitation of instability of Li2S–GeS2–P2S5 in contact with Li was solved by using double layer electrolyte configuration: Li/(Li2S-P2S5/Li2S–GeS2–P2S5)/LiCoO2. LiCoO2 with SSEs heat-treated with elemental sulfur at elevated temperature exhibited a discharge capacity of 129 mA h g−1 at the second cycle and considerably improved cycling stability.  相似文献   

18.
The electrochemical performance of aqueous rechargeable lithium battery (ARLB) with LiV3O8 and LiMn2O4 in saturated LiNO3 electrolyte is studied. The results indicate that these two electrode materials are stable in the aqueous solution and no hydrogen or oxygen produced, moreover, intercalation/de-intercalation of lithium ions occurred within the range of electrochemical stability of water. The electrochemical performance tests show that the specific capacity of LiMn2O4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries.  相似文献   

19.
Li3V2(PO4)3/C composite cathode material was synthesized via carbothermal reduction process in a pilot scale production test using battery grade raw materials with the aim of studying the feasibility for their practical applications. XRD, FT-IR, XPS, CV, EIS and battery charge-discharge tests were used to characterize the as-prepared material. The XRD and FT-IR data suggested that the as-prepared Li3V2(PO4)3/C material exhibits an orderly monoclinic structure based on the connectivity of PO4 tetrahedra and VO6 octahedra. Half cell tests indicated that an excellent high-rate cyclic performance was achieved on the Li3V2(PO4)3/C cathodes in the voltage range of 3.0-4.3 V, retaining a capacity of 95% (96 mAh/g) after 100 cycles at 20C discharge rate. The low-temperature performance of the cathode was further evaluated, showing 0.5C discharge capacity of 122 and 119 mAh/g at −25 and −40 °C, respectively. The discharge capacity of graphite//Li3V2(PO4)3 batteries with a designed battery capacity of 14 Ah is as high as 109 mAh/g with a capacity retention of 92% after 224 cycles at 2C discharge rates. The promising high-rate and low-temperature performance observed in this work suggests that Li3V2(PO4)3/C is a very strong candidate to be a cathode in a next-generation Li-ion battery for electric vehicle applications.  相似文献   

20.
Highly ordered porous Cu2O film is electrodeposited on copper foil through a self-assembled polystyrene sphere template. Compared with the dense Cu2O film and the octahedral Cu2O powder, the ordered porous Cu2O film exhibits an improved electrochemical cycling stability. The capacity of the porous Cu2O film can maintain 336 mAh g−1 and 213 mAh g−1 after 50 cycles at the rate of 0.1 C and 5 C, respectively. The reversible capacity holds 63.4% as the discharge-charge rate even increases by 50 times. The enhanced high rate properties of the ordered porous film should be attributed to the sufficient contact surface of Cu2O/electrolyte and the short diffusion length of Li+. Moreover, the direct contact between Cu2O and current collector and the decreasing inactive interfaces of Cu2O/polymer binder are also suggested as being responsible for the enhanced high rate property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号