首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim to obtain microwave absorbers simultaneously possessing broad absorption bandwidth, strong absorption intensity and thin matching thickness, nitrogen-doped reduced graphene oxide decorated by cerium oxide particles (NRGO/CeO2) hybrid nanocomposite was prepared through a hydrothermal and calcination two-step route. Results of micromorphology analysis showed that numerous hexagonal CeO2 nanoparticles were evenly anchored on the crumpled surfaces of NRGO. Moreover, both nitrogen doping and hybridization with RGO could notably strengthen the microwave absorption capacity of CeO2. Remarkably, the NRGO/CeO2 hybrid nanocomposite exhibited the minimum reflection loss of ?57.2 dB at 13.4 GHz (Ku band) under a matching thickness of 1.66 mm and maximum absorption bandwidth of 4.6 GHz (from 13.2 to 17.8 GHz) at an ultrathin thickness of only 1.5 mm. Meanwhile, the hybrid nanocomposites displayed strong absorption intensity (≤-20 dB, 99% absorption) in almost the whole measured thicknesses range. Furthermore, the relationship between absorption intensity and filler loadings was uncovered. The potential microwave absorption mechanisms were further revealed. Therefore, this work opened a novel idea for designing RGO-based hybrid nanocomposites as high-performance microwave absorbers.  相似文献   

2.
ABSTRACT: Pd nanoparticles were fabricated on graphene oxide (GO) using a deposition-precipitation method with a glow discharge plasma reduction at room temperature. Argon was employed as the plasma-generating gas. The novel plasma method selectively reduces the metal ions. The graphene oxide has no change with this plasma reduction according to the Fourier transform infrared analysis. The Pd nanoparticles on the GO were uniformly distributed with an average diameter of 1.6 nm. The functional groups on the GO not only prevent Pd nanoparticles from further aggregation but also provide a strong hydrophilic property to the Pd/GO composite, which can form stable colloidal dispersions in water.  相似文献   

3.
Wuli Su  Jie Zou  Shuai Li  Lan Sun 《Ceramics International》2021,47(12):16528-16537
The mechanical properties of WC-6Co cemented carbides with different contents of graphene oxide (GO)/nanoalumina (Al2O3) composite particles were investigated. The results showed that some of the GO/Al2O3 composite particles were tightly wrapped in WC grains through boundary deformation, but some of them existed in the cobalt phase, which gradually decreased the cobalt phase lattice constant and caused different degrees of grain refinement. When the content was 0.05 wt%, the cobalt phase dissolved more W; thus, the solid solution strengthening effect was improved. In addition, the superior dispersion of the composite particles aided in particle refinement. The relative alloy density increased as the GO/Al2O3 composite particle content increased. The mechanical properties first increased and then decreased with increasing additive amounts. When the content was 0.05 wt%, the alloy had the best performance. The hardness was 2021 HV30, the strength was 2480.4 MPa, and the toughness was 11.5 MPa?m1/2.  相似文献   

4.
Graphene/polyvinylidene fluoride (PVDF) composites were prepared using in-situ solvothermal reduction of graphene oxide in the PVDF solution. The electrical conductivity of the composites was greatly improved by doping with graphene sheets. The percolation threshold of such composite was determined to be 0.31 vol.%, being much smaller than that of the composites prepared via blending reduced graphene sheets with polymer matrix. This is attributed to the large aspect ratio of the SRG sheets and their uniform dispersion in the polymer matrix. The dielectric constant of PVDF showed a marked increase from 7 to about 105 with only 0.5 vol.% loading of SRG content. Like the other conductor-insulator systems, the AC conductivity of the system also obeyed the universal dynamic response. In addition, the SRG/PVDF composite shows a much stronger nonlinear conduction behavior than carbon nanotube/nanofiber based polymer composite, owing to intense Zener tunneling between the SRG sheets. The strong electrical nonlinearity provides further support for a homogeneous dispersion of SRG sheets in the polymer matrix.  相似文献   

5.
《Ceramics International》2020,46(12):19731-19737
Reduced graphene oxide (rGO) nanosheets/alumina (Al2O3) composite ceramics were fabricated by hot-pressing sintering. The density, porosity, microhardness, flexural strength and complex permittivity were investigated to study their mechanical and dielectric properties. The results revealed that the rGO nanosheets were uniformly distributed in the Al2O3 matrix and that the composite ceramics were highly dense at 3.67–3.99 g/cm3. Due to low rGO hardness and elevated porosity, the microhardness exhibits a decreasing trend as the rGO content increases. The flexural strength first increased and then decreased with the escalation of rGO content, and the highest strength of 313.75 MPa was obtained at 3 wt%, increasing by 37.61% relative to that of the hot-pressing sintered Al2O3 ceramic. Owing to the enhanced interfacial polarization, dipole polarization, polarization relaxation loss and conductance loss, the real part and imaginary part of complex permittivity increase from 10.40 to 52.73 and from 0.08 to 28.86 as the rGO content rose from 0 wt% to 4 wt%, respectively.  相似文献   

6.
7.
X-ray photoelectron spectroscopy has been used to examine the nature of the oxide overlayers on a passivated cerium metal foil as a function of a variety of oxidation and reduction treatments. Oxidation of a clean uncontaminated cerium(III) oxide surface is facile at room temperature and produces non-stoichiometric ceria (CeO2–x) at oxygen doses as low as 10 L. At higher doses the overlayer thickens, and after a dose of 160 L the layer depth exceeds the Ce 3d photoelectron attenuation distance of about 20 Å. High pressure treatment of the foil in oxygen (0.5 bar at RT and 473 K) produces CeO2 in a high degree of crystallographic order such that O 1s photoelectron intensities are increased above that expected from a randomly oriented powder. An attempt to reduce the CeO2 layer formed by controlled oxidation with CO (633 K, 14 h, 0.6 bar) results in the formation of a carbonated surface layer. Results following attempts to reoxidise this layer are discussed.  相似文献   

8.
《Ceramics International》2020,46(7):9161-9169
Integrating of ferroelectric thin films with two-dimensional materials may provide a novel and unique characteristics in the field of optoelectronics due to the coupling of their distinctive intrinsic features. A heterostructure (bismuth ferrite/zinc oxide) device is fabricated with different types of the electrode to enhance the power conversion efficiency (PCE). A single-phase multiferroic BFO thin film is grown by atomic layer deposition (ALD) method and annealed in different environments such as helium, nitrogen, and oxygen. We investigated the effect of annealing parameters and different types of electrodes on solar cell applications. We observed that the leakage current 10 orders of magnitude was reduced by decreasing in the dielectric loss. Further, the power conversion efficiency (PCE) is improved from 4.1% to 7.4% with a hybrid transparent electrode (graphene/indium tin oxide). The value of PCE is further increased at a low temperature. So, the improvement in the key parameter of bismuth ferrite thin-film evidently highlights the importance of annealing atmosphere and graphene as an electrode in BFO thin film applications in optoelectronics.  相似文献   

9.
Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors.  相似文献   

10.
The low fracture toughness of Al2O3-based ceramics limited their practical application in cutting tools. In this work, graphene was chosen to reinforce Al2O3-WC-TiC composite ceramic tool materials by hot pressing. Microstructure, mechanical properties and toughening mechanisms of the composite ceramic tool materials were investigated. The results indicated that the more refined and denser composite microstructures were obtained with the introduction of graphene. The optimal flexural strength, Vickers hardness, indentation fracture toughness were 646.31?±?20.78?MPa, 24.64?±?0.42?GPa, 9.42?±?0.40?MPa?m1/2, respectively, at 0.5?vol% of graphene content, which were significantly improved compared to ceramic tool material without graphene. The main toughening mechanisms originated from weak interfaces induced by graphene, and rugged fractured surface, grain refinement, graphene pull-out, crack deflection, crack bridging, micro-crack and surface peeling were responsible for the increase of fracture toughness values.  相似文献   

11.
《Ceramics International》2017,43(7):5374-5381
The MnO2 nanoflowers/reduced graphene oxide composite is coated on a nickel foam substrate (denoted as MnO2 NF/RGO @ Ni foam) via the layer by layer (LBL) self-assembly technology without any polymer additive, following the soft chemical reduction. The layered MnO2 NF/RGO composite is uniformly anchored on the Ni foam skeleton to form the 3D porous framework, and the interlayers have access to lots of ions channels to improve the electron transfer and diffusion. This special construction of 3D porous structure is beneficial to the enhancement of electrochemical property. The specific capacitance is up to 246 F g−1 under the current density of 0.5 A g−1. After 1000 cycles, it can retain about 93%, exhibiting excellent cycle stability. The electrochemical impedance spectroscopy measurements confirm that MnO2 NF/RGO @ Ni foam electrode has lower RESR and RCT values when compared to MnO2 @ Ni foam and RGO @ Ni foam. This study opens a new door to the preparation of composite electrodes for high performance supercapacitor.  相似文献   

12.
《Ceramics International》2017,43(16):13146-13153
Ideal electromagnetic absorbing materials with lightweight and high efficiency have broad application outlook in military and civil fields. In this work, a 3D nanostructure material by hybridizing Fe3O4 nanocrystals and reduced graphene oxide (Fe3O4/rGO) were synthesized through an environmental-friendly one-pot solvothermal method. The effect of GO loading on electromagnetic (EM) wave absorption characteristic of Fe3O4/rGO was investigated. The introduction of rGO sheets not only prevented Fe3O4 from agglomerating, also improved the absorption performance of Fe3O4/rGO hybrids. With an appropriate addition, Fe3O4/rGO obtained a minimum reflection loss (RL) of −22.7 dB and the absorption bandwidth was 3.13 GHz (90% absorption).  相似文献   

13.
Multilayered composite electrodes on glassy carbon, GC, having the structure GC/PPy/PPy(Ox)/PPy, with PPy the polypyrrole and Ox a mixed valence oxide of transition metals, exhibit high reactivity and stability towards the oxygen reduction reaction (orr), when the orr proceeds electrocatalytically on the oxide particles dispersed throughout the inner layer, PPy(Ox). However the nature and concentration of the doping anions, A, of PPy have a profound effect on the resulting orr currents, due to their effects on the conductivity and morphology of the PPy layers. The paper shows and discusses these effects in the case of the composite electrode with Ox = Cu1.4Mn1.6O4 and A = Cl, ClO4, NO3, PF6 and SO42−, in acid solution (pH 2.2). Optimal conditions were encountered with Cl.  相似文献   

14.
ZnO is a semiconductor with a great interest, but it has several deficiencies which limit its use in technologic applications. One important limitation is having the band gap in the UV which reduces its use in optical devices. To solve this problem, in this work, composites based in ZnO with goethite and graphene oxide (GO) by sol-gel are prepared. The obtained samples (powders and thin films) were characterized microstructurally (DTA, XRD, micro-Raman, FE-SEM), optically (transmittance and photoluminescence) and magnetically (SQUID). The ZnO band gap of multifunctional composites shows a red-shift towards visible range (Eg ∼3.01 eV) with high transmittance ∼85% (thickness of 362 nm) over the visible wavelength range. A long-range magnetic order at room temperature appears in these nanocomposites (Ms = 1.60·10−2 emu/g). The combination of both dopants allows modifying the functional properties of ZnO, opening a great field of applications in ZnO composites, such as spintronic and optoelectronic devices.  相似文献   

15.
《Ceramics International》2020,46(17):27262-27274
Nanoparticles of xRe2O3 – (100-x)CaWO4 (Re = Eu, Dy, Sm; x = 0, 1, 3, 5, 7 and 10 mol%) were synthesized by solid-state sintering at two annealing temperatures of 800 °C and 1150 °C and characterized by neutron diffraction, Raman and photoluminescence (PL) spectroscopy. The samples are composite materials and contain tetragonal CaWO4 and cubic Re2O3 phases. The unit cell parameters, atomic position co-ordinates, crystallite size, mole-fraction of phases, bond-lengths, bond-angles and cation-oxygen co-ordination numbers were determined by Rietveld analysis of the neutron diffraction data. The short-range structure of CaWO4 consists of snub disphenoid deltahedral CaO8 and tetrahedral WO4 units and the structure of cubic Re2O3 consists of two types of ReO6 units. All the W–O bonds in WO4 units are of equal lengths (1.77–1.79 Å) whereas two kinds of slightly different Ca–O bond-lengths (2.41–2.45 Å and 2.45–2.47 Å) exist in CaO8 units. The neutron pair distribution function of the undoped CaWO4 samples shows the first peak in the range of 1.71–1.74 Å due to W–O bonds and the second peak at 2.84 Å due to O–O and Ca–O pair correlations. Raman studies of Eu-doped samples show only W–O vibration modes, however, Sm and Dy-doped CaWO4 show weak Raman peaks of Sm2O3 and Dy2O3, along with W–O bond vibrations. PL studies show highest orange-red emission at 1 mol% Sm2O3, green emission at 1 mol% Dy2O3 and red emission at 3 mol% Eu2O3. The light emission intensity in all the samples increases with the increase in annealing temperature from 800 °C to 1150 °C.  相似文献   

16.
Reduced graphene oxide (RGO) decorated with silver nanoparticles (AgNPs) was synthesized by a facile solution‐based approach in chitosan (CS) solution. The morphology and elemental composition of as‐prepared Ag/RGO/CS colloid were characterized by SEM and energy dispersive X‐ray spectroscopy, respectively. TEM images show that most of the AgNPs are uniformly dispersed in the CS matrix while the other nanoparticles are decorated on the RGO nanosheets. XRD indicates that the interlayer distance of RGO is between 0.34 and 1.87 nm while the diameter of face‐centered cubic AgNPs is no more than 30 nm. Fourier transform infrared spectroscopy of the Ag/RGO/CS colloid confirms the formation of AgNPs and RGO. X‐ray photoelectron spectroscopy proves that both the Ag ? O bond and the C ? N bond exist in the nanocomposite. Antimicrobial assays were performed using the most common species of Gram bacteria. The inhibitory effect indicates that the incorporation of AgNPs and RGO significantly improves the antimicrobial activity of CS colloid. In addition, the nanocomposite colloid exhibits significant catalytic activity toward the reduction of 4‐nitrophenol by NaBH4. © 2018 Society of Chemical Industry  相似文献   

17.
《Ceramics International》2022,48(7):9579-9594
In the field of orthopaedic implants, post-surgery infections and biocompatibility are the most challenging obstacles. Sustained and controlled antibiotic release is a key factor in novel drug delivery systems. A novel drug delivery system combined with vaterite microsphere, graphite oxide (GO), reduced graphene oxide (rGO) incorporated in a polycaprolactone (PCL) matrix on TiO2 nanotube coated Ti (TNT-Ti) is established. Anodization was employed to develop TiO2 nanotubular arrays on Ti. Ciprofloxacin hydrochloride (CPF–HCl) loaded vaterite microspheres were synthesized by in situ precipitation method. Deposition of vaterite/PCL, vaterite-GO/PCL and vaterite-rGO/PCL composite coating on TNT-Ti was carried out by dip coating method. The composite coatings were characterized for their phase content, morphological features and functional groups. Among the three types of composite coatings, vaterite-rGO/PCL composite coating is found to be capable of encapsulating CPF-HCl to a level of 75.14 μg. The drug release profile of CPF-HCl from the vaterite-rGO/PCL composite coating exhibits a controlled release amounting to only 35.02 % of release at the end of 120 h. The vaterite-rGO/PCL composite coating exhibits a low dissolution rate and possesses adequate bioactivity in HBSS and SBF solutions at 37 °C for 14 and 10 days, respectively. The in situ loaded CPF-HCL drug on vaterite microspheres, PCL polymer matrix and GO/rGO nanofillers does not affect the cytocompatibility and all the composite coatings supported cell viability and proliferation. The ability of vaterite-rGO/PCL composite coating to provide a slow and steady release of antibiotics with sufficient bioactivity and biocompatibility at the tissue implant interface makes it a promising for osteomyelitis infection of bone tissue implant materials.  相似文献   

18.
Nanocomposite materials containing graphene oxide have attracted tremendous interest as catalysts and adsorbents for water purification. In this study, mesoporous titanosilicate/reduced graphene oxide composite materials with different Ti contents were employed as adsorbents for removing bisphenol A (BPA) from water systems. The adsorptive interaction between BPA and adsorption sites on the composite materials was investigated by Fourier transform infrared (FT-IR) and Raman spectroscopy. Adsorption capacities of BPA at equilibrium, q e (mg/g), decreased with increasing Ti contents, proportional to the surface area of the composite materials. FT-IR observations for fresh and spent adsorbents indicated that BPA adsorbed onto the composite materials by the electrostatic interaction between OH functional groups contained in BPA and on the adsorbents. The electrostatic adsorption sites on the adsorbents were categorized into three hydroxyl groups: Si-OH, Ti-OH, and graphene-OH. In Raman spectra, the intensity ratios of D to G band were decreased after the adsorption of BPA, implying adsorptive interaction of benzene rings of BPA with the sp2 hybrid structure of the reduced graphene oxide.  相似文献   

19.
《Ceramics International》2020,46(14):22067-22078
In this paper we report about the synthesis and characterization of graphene oxide (GO). We monitor the effects of the different synthetic processes on the morphological and structural properties of the materials. A modified Hummers' method is adopted to obtain GO powder; H2SO4 is employed as intercalating agent, to increase the distance between graphitic layers, while KMnO4 is used as oxidizing reagent for introducing the oxygen functionalities in the graphitic structure. The oxidized graphite powder is treated in acid solution; different washing cycles are applied. The recovered powders are dispersed in aqueous solution and sonicated for 30 min or 60 min, respectively. Subsequently, these solutions are deposited on Si and SiO2(317 nm)/Si substrates by means of dip coating. GO powders, GO solutions and GO on substrate are characterized through several analytical and spectroscopic techniques. These analyses reveal that the sonication time and the washing procedure of the samples can influence the structure and the morphology of the graphene oxide flakes. Moreover, when KOH is employed as alkaline agent in a chemical reducing treatment of the GO powder before sonication, a considerable alteration of the native structure of graphene oxide is observed. The detailed characterization indicates that the properties of the GO samples are strongly influenced by the chemical and physical treatments to which it is subjected.  相似文献   

20.
This article introduces a ternary nanocomposite-based flexible thin film ammonia sensor developed on transparent polyethylene terephthalate (PET) substrate in the well-known in situ chemical oxidative polymerization technique. The nanocomposite consists of three different materials: polyaniline (PANI), reduced graphene oxide (rGO), and zinc ferrite (ZF). Keeping the PANI amount constant, seven PANI/rGO/ZF (PRZ) samples are produced by performing stoichiometric variation between rGO and ZF. Later on, various structural, morphological, and spectroscopic analysis of all the composite materials is accomplished with field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectroscopy (UV–Vis). The sensing performance of the as-produced sensors toward ammonia (NH3) is examined in the concentration range from 250 ppb to 100 ppm. The study reveals the excellent sensing ability of the PRZ3 sensor (rGO = 30%, ZF = 20%) achieving minimum and maximum responsivity values of ~51% and ~1052%, respectively, at the lowest (250 ppb) and highest (100 ppm) concentration of ammonia. The sensor also exhibits admirable repeatability, good dynamic responsivity, rapid response (tres ~2.9–5 s), moderately faster recovery (trec ~37.9–69.7 s), superb linearity against ppm variation (R2 ~ 0.989), low detection limit (~123 ppb), and exceptional selectivity toward ammonia. The substrate temperature variation divulges that room temperature (30°C) is the ideal temperature for getting outstanding responsivity of the sensor. The study is further accompanied by humidity variation in the incoming air and bending flexibility test of the substrate. A compulsory and legitimate model regarding the sensing mechanism is presented at the end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号