首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为获得汽车超高强度钢BR1500HS淬火时最佳淬火工艺参数,采用中心复合实验进行实验设计,建立了奥氏体化温度、保温时间、冷却速率为设计变量以及淬火后的抗拉强度、伸长率和硬度为目标的二阶响应面回归模型。先通过方差分析与模型误差分析验证了模型的显著性与准确性,再通过CAGE优化工具箱对二阶响应模型进行优化求解,得到了一组最优的BR1500HS淬火工艺参数,即奥氏体化温度915.271 ℃、保温时间1.957 min、冷却速率35.057 ℃/s。最后经过实际试验,从获得的淬火后BR1500HSc超高强度钢的抗拉强度为1570.8 MPa、伸长率为10.89%、硬度为54.2 HRC以及微观组织主要为马氏体,从而进一步验证了优化模型结果的可靠性。  相似文献   

2.
采用光学显微镜及扫描电镜观察和力学性能试验研究了热成形22Mn B5钢板不同温度淬火后的组织形貌和力学性能。结果表明:热冲压成形的22Mn B5马氏体钢经过淬火后,力学性能得到提升。随着加热温度的升高,马氏体转变量和板条束宽度随着增大;加热温度为920℃,保温时间为2 min时,热成型22Mn B5钢板得到均匀板条马氏体组织,抗拉强度达到最大为1540 MPa,同时伸长率达到8.96%,强塑积较淬火前提高了8.75%,综合力学性能优良。  相似文献   

3.
采用有限元模拟软件LS-DYNA对BR1500HS热轧钢U形件热冲压成形温度场和组织场进行模拟,并采用试验方法进行验证。结果表明,成形温度分别为810℃和840℃时,U形件组织几乎都转变为马氏体且晶粒较小,具有较高的抗拉强度。相同成形温度下,硬度仿真结果与实验结果的误差保持在10%以内。采用有限元软件LS-DYNA可以实现对BR1500HS热轧钢板U形件的热冲压成形的温度场和组织场的模拟,且模拟结果与实验结果较为吻合。  相似文献   

4.
采用光学显微镜及透射电镜观察,并进行力学性能试验,研究了固体介质持压淬火和热冲压两种条件下B1500HS钢板的微观组织形貌和力学性能,分析了形变对热冲压钢板强化的作用机理。结果表明:加热温度950℃,保温5min的条件下,固体介质持压淬火与热冲压后钢板金相组织均为板条状马氏体和少量残余奥氏体,材料强度大幅提升,抗拉强度分别达到1265、1448 MPa;相比固体介质持压淬火,热冲压成形试样中马氏体含量提高10.06%;热冲压形变强化相变,细化马氏体,位错密度增加并促进碳化物析出;高密度位错、细晶强化和析出强化的共同作用,提高了材料力学性能。  相似文献   

5.
对1.6 mm厚的22MnB5热成形钢板和DP980双相钢板进行激光拼焊后,开展了拼焊板热成形淬火实验,研究了拼焊板淬火前后的组织与性能.结果 表明:焊接接头淬火前不同区域的组织在淬火后均转化为板条马氏体.拼焊接头淬火后的平均抗拉强度为1294MPa,比淬火前提高了97%;强塑积比淬火后的整体22MnB5热成形钢板提高...  相似文献   

6.
耿志宇  张宇  薛晗  薛峰  周天鹏 《金属热处理》2022,47(11):192-198
通过热力学计算软件Thermo-Calc计算了2000 MPa热成形钢的平衡相图、各相的析出温度、相中的元素含量、碳化物在不同温度下的长大规律以及不同Nb、V含量对其碳化物析出温度和析出量的影响规律。选定特定成分,利用50 kg真空炉进行了熔炼,并进行热轧和冷轧,利用平板模具淬火的方式模拟热成形工艺并进行了力学性能检测和三点弯曲性能检测。利用场发射扫描电镜和EBSD对组织进行了表征。结果表明,Nb、V微合金化2000 MPa热成形钢中的碳化物主要有NbC和VC,析出温度分别在1150 ℃以上及880 ℃以上,且其析出温度分别随着Nb和V含量的升高而升高。平板模具淬火后热成形钢板的抗拉强度超过2000 MPa,伸长率超过8%,拉伸断口为韧性断口,且三点弯曲角度超过66°。SEM和EBSD的结果表明,马氏体组织由马氏体束(packet)、马氏体块(block)和马氏体板条(lath)组成,原奥氏体晶粒约为10 μm,且马氏体块的尺寸<5 μm,马氏体块内部由马氏体板条组成,马氏体板条间为不连续的小角度晶界,晶界的取向差大部分小于5°。细小的原奥氏体晶粒和马氏体块组织是微合金化2000 MPa热成形钢具有高强度、高塑韧性的主要原因。  相似文献   

7.
淬火工艺对BR1500HS超高强度硼钢板组织与性能的影响   总被引:1,自引:0,他引:1  
研究了淬火加热温度和保温时间对BR1500HS超高强度硼钢板的抗拉强度、硬度等力学性能和显微组织的影响。结果表明,随着淬火温度的升高,抗拉强度和硬度逐渐增加,当保温时间大于8 min时,淬火温度越高,组织越粗大,试验钢的抗拉强度和硬度降低。试验钢合理的淬火工艺为:淬火温度900~950 ℃、保温时间4~8 min,在此工艺下淬火的BR1500HS超高强度硼钢板马氏体转变完全,具有较好的综合力学性能。  相似文献   

8.
采用OM、SEM、EBSD和TEM等技术,研究了Si、Mn含量对超高强度热成形钢在相同的轧制和模拟热冲压成形工艺处理后的组织和性能的影响。结果表明,Si、Mn含量对热成形前轧制态钢的组织和性能有较大影响,在其它成分相同的情况下,随着Mn含量(质量分数)由0.57%增加到1.21%,实验用钢的屈服强度由552 MPa提高到751 MPa,抗拉强度由757 MPa提高到1124 MPa,组织由贝氏体+铁素体+珠光体转变为马氏体+贝氏体。随着Si含量由0.25%增加到0.38%,实验用钢的抗拉强度逐渐升高,屈服强度和伸长率呈波动趋势。在950℃保温5 min相同的工艺条件下模拟热冲压淬火实验后,4种钢的组织均为马氏体,但马氏体的精细结构各不相同,平均亚晶粒尺寸大小不一;含0.34%Si和1.21%Mn的钢B的综合力学性能最优,其屈服强度为1161 MPa,抗拉强度为1758 MPa,伸长率为6.5%,且热冲压成形后的组织为细小的板条马氏体,马氏体板条上有大量的位错,且只有少量的碳化物析出。基于本研究成分设计的超高强度热成形钢,其热冲压成形前的组织和性能与热成形后的力学性能无明显相关性,只是最终的马氏体精细结构略有差别,有利于工业化批量试制零件的性能稳定性控制。  相似文献   

9.
李晓磊  李云杰  康健  袁国  王国栋 《轧钢》2018,35(3):7-12
以低碳硅锰钢为研究对象,采用直接淬火-配分工艺研究了马氏体区淬火-配分(QP)、贝氏体区淬火-配分(BP)和直接淬火工艺对组织性能演变的影响。结果表明,经QP工艺处理后得到马氏体和残余奥氏体的组织,残余奥氏体体积分数大于10.0%,并且呈现薄膜状分布于马氏体板条间,试样屈服强度大于1 100 MPa,抗拉强度大于1 200 MPa,伸长率在14.75%~16.00%之间,强塑积可高达21.12GPa·%。经BP处理后的试样获得贝氏体基体和17.3%的残余奥氏体组织,试样伸长率高达21.00%,强塑积为22.26GPa·%。经直接淬火工艺处理后的试样,抗拉强度高达1 540 MPa,但残余奥氏体体积分数为3.6%,导致伸长率仅为8.00%,强塑积为12.32GPa·%。此外,还发现少量软相铁素体组织,可以降低试验钢的屈服强度。  相似文献   

10.
对B1500HS超高强钢进行了不同温度下的拉深实验和杯突实验,研究了初始成形温度对B1500HS钢拉深成形性能和胀形成形性能的影响规律。对钢进行不同温度下的淬火实验,研究了初始成形温度对B1500HS淬火后微观组织和力学性能的影响。结果表明:当初始成形温度为700℃时,板料具有最佳的拉深成形性能和胀形成形性能;试样淬火后获得完全马氏体组织,抗拉强度为1623 MPa,硬度为513.5 HV。综合考虑板料高温成形性能及淬火后性能,确定B1500HS超高强钢的最佳初始成形温度为700℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号