首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dual-stage control system for high-speed, ultra-precise linear motion   总被引:1,自引:1,他引:0  
Modern manufacturing equipment often requires high-speed and ultra-precise linear motion. For implementing such motion, a coarse–fine dual stage is effective because the coarse stage has a low bandwidth with a large workspace, and in contrast, the fine stage has a high bandwidth with a small stroke. This paper presents the implementation of an air-bearing, dual-stage system and its control strategy. A closed-loop feedback in an absolute space is used to realize coarse–fine control. The fine stage is driven by a voice coil motor that tracks the designed trajectory, while the coarse stage is driven by permanent-magnet linear synchronous motor that tracks the trajectory of the fine stage to prevent its motion saturation. Also analyzed are the coupled dynamics of the air-bearing dual stage driven by a direct-drive motor. Identification and robust control design for the fine stage are introduced in detail. Method tests for the single fine stage are performed, and the results demonstrate that ultra-precision control can be realized for the fine stage. Next, experiments are presented with the dual stage using different loads. Experimental results show that our control strategy can achieve high-speed, ultra-precision linear motion through the dual stage with a satisfactory performance.  相似文献   

2.
高速高精度叠层直线运动控制系统   总被引:4,自引:0,他引:4  
在分析粗精动控制系统的耦合及轨迹分配等问题的基础上,介绍叠层试验台高速高精度直线运动的实现: 采用永磁直线交流电动机驱动粗动台,粗动台行程大但带宽较低;音圈电动机驱动精动台,精动台带宽高但行程较小。用绝对空间闭环方式实现试验台的粗精运动控制,这种方法可以忽略粗动台对精动台的惯性力扰动,精动台直接跟踪给定轨迹,粗动台跟踪精动台的运动轨迹防止精动台发生运动饱和。试验结果表明,精动台显著提高了系统的定位和跟踪精度,该控制方法使叠层试验台的高速高精度运动得以方便实现。  相似文献   

3.
The present paper describes a practical control method for a precision motion system and the performance thereof. For practical use, high motion control performance and ease of design and controller adjustment are desired. A nominal characteristic trajectory following control (NCTF control) has been investigated to realize high performance and ease of application of point-to-point (PTP) positioning. The controller comprising a nominal characteristic trajectory (NCT) and a PI compensator is free from exact modeling and parameter identification. In the present paper, the NCTF control is modified in order to improve the control performance of continuous motions such as tracking and contouring motions. The NCTF controller for continuous motion (referred to as Continuous Motion NCTF controller) has a structure that is almost identical to the conventional NCTF controller and is designed using the same design procedure. The Continuous Motion NCTF controller is applied to ball screw mechanisms, and its motion control performance is evaluated from the experimental tracking, contouring, and positioning control results. The experimental results prove that the Continuous Motion NCTF controller achieves the same positioning performance as the conventional NCTF controller, and generally achieves better continuous motion control performances than PI-D or conventional NCTF controllers. In 0.25 Hz and 100-nm radius circular motion, the experimental tracking errors for Continuous Motion NCTF were smaller than 10 nm.  相似文献   

4.
We developed a metrological atomic force microscope (MAFM) using a large range scanning dual stage and evaluated the performance in the measurement of lateral dimension. AFMs are widely used in nanotechnology for very high spatial resolution, but the limitation in measurement range should be overcome to expand its application in nanometrology. Therefore, we constructed new MAFM having a large measurement of 200 mm × 200 mm by using a dual stage and an AFM head module. The dual stage is composed of a coarse and a fine stage to obtain large scanning range and high resolution simultaneously. Precision surfaces and PTFE sliding pads guide the motion of coarse stage, drove by a fine pitch screw and DC motors. Flexure hinges and PZT actuators are utilized for the fine stage. Multi-axis interferometers measure the five degrees of freedom motion of the dual stage for the position control and the compensation of parasitic angular motions. The vertical displacement of AFM tip is measured by a built-in capacitive sensor in the AFM head module within the range of 38 μm. The performance of the dual stage was evaluated and the expanded uncertainty (k = 2) in the measurements of 1-D displacement L was estimated as $ U(L) = \sqrt {(2.8nm)^2 + (3.0 \times 10^{ - 7} \times L)^2 } $ U(L) = \sqrt {(2.8nm)^2 + (3.0 \times 10^{ - 7} \times L)^2 } . The relative uncertainty in pitch measurement was less than 0.02 % and the improvement of accuracy was verified by comparing with other MAFM, which are mostly due to the expansion of scan range and the compensation of angular motion. To enhance the performance, we will reduce the vibration and examine the motion of stage in the vertical direction during a long range scan.  相似文献   

5.
This paper presents a novel approach for precisely controlling the motion of a piezo actuator embedded in a mechanical stage without using a displacement sensor. A piezo actuator has a high displacement resolution, but the positioning performance is degraded by hysteresis between the applied voltage and resultant displacement. However, an electromechanical model of a piezo actuator suggests that the charge flowing in the actuator is directly related to the dynamic response of the piezo displacement. Therefore, this study directly measured the charge stored in a piezo actuator, and achieved dynamic reference tracking of the actuator's displacement by regulating the charge flowing through the actuator to follow a predefined trajectory.This novel approach requires neither specially designed charge amplifier circuits nor implementation of an inverse hysteresis model. The complete model identification and the digital controller design procedure for a piezo-driven mechanical stage are presented. The charge feedback controller is designed according to the dynamic characteristics of both the actuator and the stage, so that instability is minimized relative to using a charge amplifier. The experimental results confirm satisfactory tracking performance, and reveal the influence of model uncertainties on the system performance.  相似文献   

6.
付云博  郭同健 《光学精密工程》2018,26(10):2455-2462
为了实现对基因测序仪运动平台的高精度定位控制,建立了基因测序仪运动平台控制系统。对该系统所采用的数学建模、模型辨识、控制器设计、输入整形等方法进行研究。根据运动平台动力学方程和永磁同步直线电机电压-推力关系构建了运动平台数学模型,利用频域扫描法在实物实验的基础上辨识出运动平台的模型参数。最后,基于运动平台模型设计了双闭环控制器和前馈控制器组成的复合控制器来保证运动平台的稳定性和高精度,同时根据整个系统的主导极点设计了输入整形器以抑制运动平台的残余振荡。实验结果表明:加入了输入整形的复合控制器将运动平台的稳态重复定位精度从±1.47μm提高到±0.354μm。较传统复合控制器,本文提出的方法能使基因测序仪运动平台更快进入可用重复定位精度范围,并基本满足基因测序仪采集图像时所需的稳定性强、精度高等要求。  相似文献   

7.
One of the major sources that affect measurement accuracy and limit the use of high motion speeds in coordinate measuring machines (CMM) is the position error. In fact, static and dynamic probe errors are more direct factors in measuring machine accuracy, but are not the subject of this research. However the accuracy of acquisition of component position errors using a CMM in motion is also of importance, hence the dynamics of a CMM need to be considered. Therefore, this research aims to model the dynamics of a horizontal arm CMM by considering drive flexibility at joints and evaluates the characteristics of the system for fine motion control purposes. Design of a precision tracking controller (PTC) to perform superior tracking for enhancing the measurement accuracy and the probing speed in providing less inspection time at high motion speeds is carried out. A dynamic model for the CMM is developed including drive flexibilities represented with lumped springs at the joints. Due to the non-collocated nature of the control scheme in the flexible CMM dynamics, a non-minimum phase system is observed in the proposed CMM model. Using the derived CMM model with joint flexibilities, tracking motion control simulations are conducted at different probing speeds for the cases where a PI controller and a feedback PTC are employed. A comparison of the PI controller with the feedback PTC is also performed. Results demonstrate that the effects of joint flexibilities on the contour error and probing speeds are significant and the PI controller is not capable of providing good accuracy during challenging tasks such as corner tracking. However, the simulation results indicated that by using the proposed feedback precision tracking controller, contour errors in corner tracking that are caused by joint flexibilities can be reduced effectively .  相似文献   

8.
This paper proposes the control and dynamic releasing method of a symmetric microgripper with integrated position sensing. The microgripper adopted in this micromanipulation system is constructed by two L-shaped leverage mechanisms and the fingers of the microgripper is machined much thinner than the gripper body. A combined feedforward/feedback position controller is established to improve the motion accuracy of the microgripper in high frequency. The feedforward controller is established based on rate-dependent inverse Prandtl-Ishlinskii (P–I) hysteresis model. The inertial force generated in dynamic based releasing process is analyzed through MATLAB simulation. Open-loop experimental tests have been performed, and the results indicate the first natural frequency of the microgripper is 730 Hz. Then experiments in high frequency based on the developed combined controller are carried out and the results show the tracking error of a superimposed sinusoidal trajectory with the frequency of 100 Hz, 120 Hz and 130 Hz is 6.4%. Finally, the tiny objects releasing experiments are conducted where the combined controller is used to control the motion amplitude and frequency to achieve inertial force controllable to improve operation accuracy. And the results show that the dynamic releasing strategy is effective.  相似文献   

9.
This paper proposes a hybrid control strategy of a novel linear piezoelectric walking stage based on two sorts of piezoelectric actuators, which takes the load variation into account. The proposed stage consists of two parallel 4-bar lever amplification mechanisms with flexure hinges actuated by piezoelectric stacks to heighten the vertical distance (that is more tolerable to the assembly discrepancy), two compression springs (that is able to maintain a fixed linear position without powering), and two shear piezoelectric actuators (that can achieve longer and equivalent to walking motion) in a small form factor. The proposed stage has two operating modes, namely a coarse positioning mode with a more extensive travel range and a fine positioning mode with a nanometer-level resolution, to possess excellent performance for the linear piezoelectric walking stage of load variations. One multimodal switching controller and one feedforward-feedback controller conduct the coarse mode and fine mode, respectively. The optimal frequency for a specific load is obtained through a backpropagation neural network in the multimodal switching control. In the feedforward-feedback control, the inverse mathematical model based on the Bouc-Wen hysteresis model is used to mitigate the hysteresis effect in the feedforward part while the proportional–integral–derivative controller in the feedback part handles the external system disturbances. Experimental results show the proposed hybrid coarse/fine mode control strategy's effectiveness to satisfy an efficient and accurate positioning task.  相似文献   

10.
丛成 《机械与电子》2022,(11):51-54
由于无法消除机械臂运动过程中存在的高频振动,导致运动控制方法存在跟踪精度低、控制稳定性差和控制性能差等问题。对此,提出一种基于自适应滑膜控制器的机械臂运动控制方法,在机械臂动力学模型的基础上设计非线性观测器,对机械臂控制系统中存在的干扰信号进行观测,设计自适应滑膜控制器对干扰信号进行补偿。将补偿器引入自适应滑膜控制器中,其主要作用是抑制机械臂在运动过程中存在的高频振动,以提高控制稳定性,通过 Lyapunov 函数设计自适应滑膜控制器的总控制律,根据总控制律利用改进后的自适应滑膜控制器完成机械臂的运动控制。实验结果表明,所提方法的跟踪精度高、稳定性好、控制性能高。  相似文献   

11.
A dual stage feed drive system is well suited to satisfying current demands of high performance machining with tight position control under high feed rates in the presence of disturbances. It does this by integrating an actuator with high position resolution and fast response together with a conventional linear drive. A magnetostrictive actuator (MA) with a bandwidth in the kHz range capable of several kN of force output is an ideal candidate for use as the fine positioning element in such a dual stage system. However, MAs display significant hysteresis in their performance. This makes the effective implementation of real-time fast servo control challenging. In this paper, a dynamic Preisach model is utilized to reduce the undesired nonlinearity. A sliding mode controller (SMC) is designed to deal with uncertainties such as the Preisach modeling error as well as external disturbances so as to ensure a robust stable system. Experimental results show the servo performance improvement during a feed step test for single axis control and a single axis component of a sharp path interpolation test.  相似文献   

12.
This study presents a time-invariant feedforward (FF) element design for the high-speed and high-precision tracking control of an ultrahigh-acceleration, high-velocity linear synchronous motor (LSM). The linear motor can generate an acceleration greater than 70 G (= 686 m/s2) and move at a velocity above 10 m/s. To take advantage of this performance and realize high response, the design and usage of suitable FF elements is crucial. However, as the LSM includes highly nonlinear characteristics, it is difficult to provide an exact dynamic model for FF design. To overcome this problem, a control system with a learning controller (LC) as the FF element has been designed previously, demonstrating high-precision and high response motion. However, the motion performance can be achieved only with sufficient pre-learned motions. The integrator and the disturbance observer that were effective in suppressing disturbances were removed from the control system. In addition, the control system has some FF time-invariant elements along with the LC. This study proposes a design method for easy design of all FF elements using an LC. The designed FF elements are time invariant and are used with an integrator and a disturbance observer, without pre-learning. Using the proposed method, two sets of time-invariant FF elements are designed. The performances of two control systems, which include a set of time-invariant FF elements for each, and a simple disturbance observer are experimentally examined and compared with two previously designed control systems. Experimental results demonstrate that the performance of one of the control systems with a set of time-invariant FF elements designed in this study and a disturbance observer is good and almost comparable with that of the previously designed control system with high-precision and high response motion.  相似文献   

13.
This paper discusses dynamic modeling, controller design, simulation, and experiment for a non-contact three-degree-of-freedom planar motion stage for precision measurement and control of positions. A simplified model of this planar motion stage driven by four permanent magnetic linear motors is established on an assumption that the influence of the small yawing motion on the electromagnetic characteristics of the planar motion stage can be neglected. Overall control strategy, including a fine-tuned proportional integral derivative component to yield basic dynamic performance and a component derived from sliding mode observer to estimate and compensate for modeling uncertainties and disturbances, is developed and implemented in a digital signal processor. Simulation study and experimental results of using a three-axis interferometer as the position sensor are presented to verify the effectiveness of the suggested dynamic compensation strategy and tracking performance of the non-contact planar motion stage.  相似文献   

14.
从提高位置精度出发,采用了基于圆光栅全闭环反馈的回转关节控制方案。在分析传统运动精度补偿方法的基础上,结合激光干涉仪回转轴校准系统对位置精度的检测结果,建立了一种综合考虑大周期误差及小周期误差的三次封闭样条与三角函数相叠加的回转运动误差补偿模型,从而使定点误差测量结果能够应用到整个行程区间的准确补偿。在兼顾精度和效率的基础上提出了相应的无累积误差的补偿算法以提高误差补偿精度并进行了实验,使补偿后的残留误差标准差减小了47.4%,表明该方法可有效提高回转关节位置精度。  相似文献   

15.
自动灌装机跟踪精度及其对干扰信号的抑制能力是提高灌装效率的核心问题.根据系统周期性重复运行的特点,提出了基于PID控制与带比例微分调节的双重复控制的复合控制策略.基于系统传递函数模型,采用遗传算法对PID参数进行优化.仿真结果表明,该复合控制方法使控制系统误差收敛速度快,稳态精度高,鲁棒性好,可有效提高设备灌装效率和产品质量.  相似文献   

16.
针对机械臂的实时控制问题,基于约束预测控制,提出了一种机械臂实时运动控制方法。介绍了机械臂动力学模型并进行了线性化处理,以降低算法复杂度、保证实时性。设计了轨迹跟踪控制器和约束预测控制器,其中轨迹跟踪控制器采用最优反馈控制律,可确保机械臂按参考轨迹运动;而约束预测控制器则在考虑机械臂物理约束的情况下,为跟踪控制器提供最优参考轨迹。以DSP作为核心控制器,搭建了机械臂控制系统,同时给出了硬件和软件设计方法。以梯形和三次多项式轨迹为例,进行了系统功能测试,测试结果表明了所述控制系统的可行性和有效性。  相似文献   

17.
A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.  相似文献   

18.
针对数控机床、机械手等系统的发展需要,设计了基于DSP的开放式运动控制器.控制器通过PCI总线与上位机通信,采用DSP和CPLD完成了运动控制功能,实现了机械手关节运动的伺服控制.考虑机械手的动力学特性,设计了单神经元自适应PID控制器,在开放式控制平台上实现了机械手的精确轨迹跟踪.试验结果表明,该系统具有良好的开放性...  相似文献   

19.
A direct adaptive robust tracking control is proposed for trajectory tracking of 6 DOF industrial robot in the presence of parametric uncertainties, external disturbances and uncertain nonlinearities. The controller is designed based on the dynamic characteristics in the working space of the end-effector of the 6 DOF robot. The controller includes robust control term and model compensation term that is developed directly based on the input reference or desired motion trajectory. A projection-type parametric adaptation law is also designed to compensate for parametric estimation errors for the adaptive robust control. The feasibility and effectiveness of the proposed direct adaptive robust control law and the associated projection-type parametric adaptation law have been comparatively evaluated based on two 6 DOF industrial robots. The test results demonstrate that the proposed control can be employed to better maintain the desired trajectory tracking even in the presence of large parametric uncertainties and external disturbances as compared with PD controller and nonlinear controller. The parametric estimates also eventually converge to the real values along with the convergence of tracking errors, which further validate the effectiveness of the proposed parametric adaption law.  相似文献   

20.
提出一种针对发生非刚性形变的三维物体自动对准的方法。该方法将相关点漂移(CPD)的点云对准方法与动态形变图相结合,实现了粗对准与细对准相结合的双尺度对准方法。首先,通过CPD方法将源模型初始对准到目标模型;其次,利用动态形变图简化源模型,高斯牛顿法优化形变能量函数求取最优变形场,并将该形变外推到源模型的所有顶点,完成自动对准。实验表明,该方法适用于完整或不完整三维模型的非刚性对准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号