首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Evolving optimal management strategies are essential for the sustainable development of water resources. A coupled simulation-optimization model that links the simulation and optimization models internally through a response matrix approach is developed for the conjunctive use of groundwater and surface water in meeting irrigation water demand and municipal water supply, while ensuring groundwater sustainability and maintaining environmental flow in river. It incorporates the stream-aquifer interactions, and the aquifer response matrix is generated from a numerical groundwater model. The optimization model is solved by using MATLAB. The developed model has been applied to the Hormat-Golina valley alluvial stream-aquifer system, Ethiopia, and the optimal pumping schedules were obtained for the existing 43 wells under two different scenarios representing with and without restrictions on stream flow depletion, and satisfying the physical, operational and managerial constraints arising due to hydrological configuration, sustainability and ecological services. The study reveals that the total annual optimal pumping is reduced by 19.75?% due to restrictions on stream flow depletion. It is observed that the groundwater pumping from the aquifer has a significant effect on the stream flow depletion and the optimal conjunctive water use plays a great role in preventing groundwater depletion caused by the extensive pumping for various purposes. The groundwater contribution in optimal conjunctive water use is very high having a value of 92?% because of limited capacity of canal. The findings would be useful to the planners and decision makers for ensuring long-term water sustainability.

  相似文献   

2.
3.
River water has dual functions; it can be withdrawn for agricultural, industrial, and domestic uses and provides eco-environmental water (EEW) for riverine systems. A concept of intensity of ecological function of river water (IEFRW) has been put forward, and an integrated water quantity and quality evaluation method in combination with eco-environmental water requirements has been developed for a river. Based on the monthly data of water quality and quantity as well as the withdrawals during 1997 to 1999, an integrated evaluation of water resources has been conducted for the Yellow River. The results indicated that actual IEFRW can directly reflect the health state of riverine ecosystems. The actual increments of water resources availabilities caused by providing EEW for the riverine systems were lower than the eco-environmental water requirements of the riverine ecosystem, leading to the intermittent interruption of river flow and other eco-environmental problems of the Yellow River.  相似文献   

4.
Abstract

The Water Evaluation and Planning Version 21 (WEAP21) Integrated Water Resource Management (IWRM) model seamlessly integrates water supplies generated through watershed-scale hydrologic processes with a water management model driven by water demands and environmental requirements and is governed by the natural watershed and physical network of reservoirs, canals, and diversions. This version (WEAP21) extends the previous WEAP model by introducing the concept of demand priorities and supply preferences, which are used in a linear programming heuristic to solve the water allocation problem as an alternative to multi-criteria weighting or rule-based logic approaches. WEAP21 introduces a transparent set of model objects and procedures that can be used to analyze a full range of issues faced by water planners through a scenario-based approach. These issues include climate variability and change, watershed condition, anticipated demands, ecosystem needs, the regulatory environment, operational objectives, and available infrastructure.  相似文献   

5.
We present a method to estimate Time of Concentration (T c) and Storage Coefficient (R) to develop Clark’s Instantaneous Unit Hydrograph (CIUH). T c is estimated from Time Area Diagram of the catchment and R is determined using optimization approach based on Downhill Simplex technique (code written in FORTRAN). Four different objective functions are used in optimization to determine R. The sum of least squares objective function is used in a novel way by relating it to slope of a linear regression best fit line drawn between observed and simulated peak discharge values to find R. Physical parameters (delineation, land slope, stream lengths and associated drainage areas) of the catchment are derived from SPOT satellite imageries of the basin using ERDAS: Arc GIS is used for geographic data processing. Ten randomly selected rainfall–runoff events are used for calibration and five for validation. Using CIUH, a Direct surface runoff hydrograph (DSRH) is developed. Kaha catchment (5,598 km2), part of Indus river system, located in semi-arid region of Pakistan and dominated by hill torrent flows is used to demonstrate the applicability of proposed approach. Model results during validation are very good with model efficiency of more than 95% and root mean square error of less than 6%. Impact of variation in model parameters T c and R on DSRH is investigated. It is identified that DSRH is more sensitive to R compared to T c. Relatively equal values of R and T c reveal that shape of DSRH for a large catchment depends on both runoff diffusion and translation flow effects. The runoff diffusion effect is found to be dominant.  相似文献   

6.
Groundwater resources have become the main resources for water supply due to the unavailability of surface water in arid zones. Arid zone’s damage to groundwater resources will have a high impact on human life in arid zones comparing to other regions. Due to the lack of surface water resources in these arid zones, groundwater is used as a resource for drinking and sanitation purposes due to the lack of surface water resources in these arid zones. Water desalination facilities are set up in locations where there is both sufficient amount of water (quantitative criteria) and the extracted water has adequate quality (qualitative criteria). Therefore, an optimization model should be used to locate optimal places for water desalination facilities. Multi-criteria decision-making models are mathematical techniques that, by using the geographic information system, are able to evaluate the options under complicated and indefinite geographic conditions. This research prepares information and factor maps to assign weights to qualitative water maps which were combined in the form of an inductive network. Therefore, by employing the concept of fuzzy fusion models, this article presents a method for solving multi-criteria geographically-indeterminate problems, and finally finds an appropriate location for the construction of a water desalination system in the desert region of Birjand in Iran.  相似文献   

7.
Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in watersheds that are experiencing urbanization. Soil and Water Assessment Tool (SWAT) has been widely used in hydrologic and nonpoint sources modeling. However, its subdaily modeling capability is limited to hourly flow simulation. This paper presents the development and testing of a sub-hourly rainfall–runoff model in SWAT. SWAT algorithms for infiltration, surface runoff, flow routing, impoundments, and lagging of surface runoff have been modified to allow flow simulations with a sub-hourly time interval as small as one minute. Evapotranspiration, soil water contents, base flow, and lateral flow are estimated on a daily basis and distributed equally for each time step. The sub-hourly routines were tested on a 1.9 km2 watershed (70% undeveloped) near Lost Creek in Austin Texas USA. Sensitivity analysis shows that channel flow parameters are more sensitive in sub-hourly simulations (Δt = 15 min) while base flow parameters are more important in daily simulations (Δt = 1 day). A case study shows that the sub-hourly SWAT model reasonably reproduces stream flow hydrograph under multiple storm events. Calibrated stream flow for 1 year period with 15 min simulation (R 2 = 0.93) shows better performance compared to daily simulation for the same period (R 2 = 0.72). A statistical analysis shows that the improvement in the model performance with sub-hourly time interval is mostly due to the improvement in predicting high flows. The sub-hourly version of SWAT is a promising tool for hydrology and non-point source pollution assessment studies, although more development on water quality modeling is still needed.  相似文献   

8.
Chu  Junying  Zhou  Zuhao  Ding  Xiangyi  Tian  Ziyang 《Water Resources Management》2022,36(11):4161-4182

Aiming at trading off several conflicting criteria in practical maintenance in a deteriorating water distribution network, a life cycle oriented multi-objective optimization model of water distribution network maintenance is developed, which is composed of seven interrelated sub-models with different functions. This model can provide decision support for preventive maintenance decision, including identifying the pipeline that needs to be maintained, judging the time point for maintenance, determining the type of maintenance technology, calculating the economic cost of maintenance, and presenting the impact under different maintenance strategies. Based on the life cycle of each pipeline, multiple effects in the water distribution can be dynamically evaluated, such as pipeline age, failure rate, hydraulic reliability health level etc. Based on special design of chromosome gene encoding, the algorithm of elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) is incorporated to achieve multi-objective optimization solution effectively. With application of a county in Zhejiang province in China, three strategies including empirical decision single-objective optimization decision and multi-objective optimization decision are evaluated and compared to the baseline systematically. Although the annual maintenance cost of strategy III is not the lowest among those three strategies, the pipeline age, failure rate, hydraulic reliability, and health level of the water distribution network under the strategy are at the best level. With multiple objectives considered simultaneously, the results of strategy III are recommended as the optimal maintenance implementation arrangements. This model can promote to find an optimal maintenance strategy, and provide a technical support for the planning, design and implementation of maintenance arrangements of water distribution network in a long-term period.

  相似文献   

9.
The present research is an attempt to find out the groundwater potential zones within an arid region of India supported by the scientific investigation of lithology, geomorphology, geohydrological characterization of geological formations and their interrelationship. Thematic layers of drainage, lithology, geomorphology, lineaments, slope, soil, digital elevation model, rainfall, landuse/land cover and well inventory have been generated by using ancillary data, digital satellite image, water level data of 90 observation wells for last 11?years (2000?C2010), litholog data along with ground truthing. The groundwater potential zones have been classified into five categories like very poor, poor, moderate, good and excellent. The potential zones were obtained by weighted overlay combination using the spatial analyst tool in ArcGIS 9.2. During weighted overlay analysis, the ranking was given for each individual parameter of each thematic map and weights were assigned according to their influence such as lithology (20?%), geomorphology (15?%), lineament density (15?%), drainage density (15?%), soil (10?%), slope (10?%), rainfall (5?%), land use and land cover (5?%) and digital elevation model (DEM) (5?%) and it was found that the potential zones in terms of very poor, poor, moderate, good and excellent zones covered 13.7?%, 42.8?%, 27.3?%, 10.8% and 5.4% respectively of the total area. The result also has been validated by yield data collected from existing sources and it confirms that the higher yield categories are falling within excellent groundwater potential zones where yield ranges from 23 to 40.3?l/s and lower values ranging from 8.1 to 10.6?l/s are falling within poor groundwater potential zones.  相似文献   

10.
11.
Irrigation of pasture forms the greatest single use of irrigation water in Australia yet there has been little monitoring of its spatial extent and water demands across southeast Australian coastal catchments where irrigated dairy farming forms an important rural livelihood. This paper provides an analysis of spatio-temporal patterns in the extent of irrigated pasture in the Bega–Bemboka catchment on the south coast of New South Wales from Landsat imagery, and establishes quantile regression relationships between metered monthly irrigation abstraction volumes, evaporation and rainfall. Over the metering period (2000–2007), annual water usage averages 4.8 ML ha − 1 year − 1, with January being the month of highest demand with an annualised usage of 10.4 ML ha − 1 year − 1. Analysis of Landsat imagery indicates that the spatial extent of irrigated pasture across the catchment has increased from 1266 ha in 1983 to 1842 ha by 2002, together with amalgamation of smaller holdings along less reliable streams into larger parcels along the trunk stream. Quantile regressions to estimate monthly mean and maximum abstraction volumes from monthly evaporation and rainfall data indicate that abstraction volumes are more closely correlated with evaporation. When combined with Landsat analyses of the spatial extent of irrigated areas, such relationships enable estimation of catchment-scale hydrological effects of irrigation abstractions that in turn can help guide regional-scale assessments of the ecological effects and sustainability of spatially and temporally changing irrigation abstraction volumes.  相似文献   

12.
The term virtual water refers to the volume of water used in the production of a commodity or service. Accordingly, virtual water ??trade?? is the amount of water ??embedded?? in commodities being transferred from one place to another as a consequence of trade. This paper argues that the conventional methods so far adopted for the computation of virtual water ??flows?? (based on Hoekstra and Hung 2002) have considered only direct water usage and not sufficiently distinguished between blue and green water resources. This has brought about flawed estimates of virtual water ??flows??, thereby limiting the usefulness of the virtual water concept as a tool for informing water policy. A novel approach for computing virtual water ??flows?? which applies the Input?Coutput (IO) methodology to account for both direct and indirect water consumption, and simultaneously distinguishes between the different typologies of water, is presented. The study upholds that the integration of these two methods can not only provide a more robust framework for quantifying virtual water ??flows??, but also enhance the relevance of the concept as a tool for water resource management policy. The implications of these alternative estimation methods are here illustrated using data referring to 11 Mediterranean economies and 7 internationally traded agricultural commodities.  相似文献   

13.
In this paper, a review of the primary drivers of the use of optical and fibre optic technology upon water quality monitoring is considered. The technological advances and challenges are discussed and the potential impact of new components, devices and methods illustrated for environmental monitoring into the future, using optical techniques.  相似文献   

14.
Sediment-water partitioning and diffusive transport of 2,2’,5,5’-tetrachlorobiphenyl, PCB congener IUPAC #52 (TCB52) were examined in laboratory experiments with sediments from two sites in the lower Fox River, Wisconsin. Native water was pumped at controlled flow rates through cells containing sediments amended with a known activity of carbon-14-labeled TCB52. Concentrations of TCB52 in water and sediments were determined by liquid scintillation measurements of carbon-14 activity. Sediment-water partitioning was independent of flow rate for rates up to 8 m/d. Distribution coefficients (Kd) and soil-sorption coefficients (Koc) were found to be at maximum levels 5–10 cm below the surface, despite an absence of significant variation in the fraction of organic carbon (foc) through the same profile. Other factors, such as the effects of colloids and microbial activity in the sediments, are likely to be important in controlling the PCB distribution. Log Kd and log Koc ranges were 4.1–4.9 and 5.3–6.1, respectively, and calculated effective diffusivities at the sediment-water interface ranged from 3 to 8 × 10−10 cm2/s. Gradual increases with time in TCB52 concentrations in the water phase, possibly due to effects of microbial activity, were observed. Diffusion experiments and models showed that the TCB52 migration rate within the sediment column is 8-9 mm/yr.  相似文献   

15.
配水系统中铝(Al)的污垢沉积会对自来水水质产生有害影响,这是因为沉积物会使水变浑,并对消毒剂产生干扰,甚至还会增大输水过程中的能量损失。去除含铝污垢会释放出痕量金属。人们对这种影响和沉积物的成分知之甚少,因此,缺少可靠的指导来处理现行和预期的变化影响。给出了美国所选配水系统中有关污垢元素成分的新数据,讨论了今后开展设计研究的意义以及未来需要进行研究的重点领域。  相似文献   

16.
Planning appropriate portfolios of new water supplies and demand management measures requires considering a wide array of options and their interactions over a largely unknown future. Various modelling-assisted approaches are available to help this planning process. This paper applies two such frameworks to the UK’s Thames water resource system and compares their methods and outputs: how they consider uncertainty, how they represent supply and demand management options, and what plans each recommends. The first method is the current England and Wales industry standard: annual least-cost capacity expansion optimisation over a 25 to 30 year time horizon considering capital, operating (fixed and variable), social and environmental costs. The second approach uses stochastic simulation and regret analysis to select a preferred alternative, then statistical cluster analysis to identify causes of system failure enabling further plan improvement. When applied iteratively with system planners this second approach is referred to as Robust Decision Making (RDM). The economic optimisation approach considers all plausible combinations of supply and conservation schemes and recommends the least-cost schedule of their implementation. Our RDM application considers a smaller number of options but makes a more detailed assessment of the effect of uncertainty (supply, demand and energy price uncertainty were considered) on multiple criteria of system performance. The simulation-based approach also enables more realistic interaction amongst supply and demand management schemes. Both approaches recommended different plans which we explain by discussing the benefits and limitations of each. Joint application is recommended to produce least-cost plans that are robust considering multiple criteria of performance across a wide range of futures.  相似文献   

17.
This study investigates an interdisciplinary scenario analysis to assess the potential impacts of climate, land use/cover and population changes on future water availability and demand in the Srepok River basin, a trans-boundary basin. Based on the output from a high-resolution Regional Climate Model (ECHAM 4, Scenarios A2 and B2) developed by the Southeast Asia—System for Analysis, Research and Training (SEA-START) Regional Center, future rainfall was downscaled to the study area and bias correction was carried out to generate the daily rainfall series. Land use/cover change was quantified using a GIS-based logistic regression approach and future population was projected from the historical data. These changes, individually or in combination, were then input into the calibrated hydrological model (HEC-HMS) to project future hydrological variables. The results reveal that surface runoff will be increased with increased future rainfall. Land use/cover change is found to have the largest impact on increased water demand, and thus reduced future water availability. The combined scenario shows an increasing level of water stress at both the basin and sub-basin levels, especially in the dry season.  相似文献   

18.
As “corridor” in the south–north and “barrier” in the west–east direction, Lancang River, the upstream of Lancang–Mekong River, has an obvious spatial–temporal characteristic and unique regional attributes. Recently, the hydropower development of the mainstream along Lancang River has disturbed the regional ecosystem to have unstable factors, and threatened the ecosystem health. This paper used the couple model of Grading Coefficient of ecological water requirement (GCEWR) and the ecological runoff (ER) to simulate the ecological water requirement (EWR) of Lancang River, in a broad sense, this method belongs to hydrology–ecology methodology. In the GCEWR–ER, We adopted ecological characteristic indexes (ECI) and hydrological characteristic variables (e.g. variance index) to calculate the GCEWR, and used three methods to calculate the basic variable (e.g. ER) of EWR: the first method directly used annual average runoff as ER; the second method was used frequency method and took year as basic time unit, and the third method took season (e.g. flood season, non-flood season) as the basic time unit to evaluate ER. Finally, in order to demonstrate applicability of this developed methodology, this paper adopted GCEWR–ER method to calculate the EWR of Lancang River in the Longitudinal Range-Gorge Region. By the systematic analysis of the results, we could get the minimum, satisfying and optimal EWR for the Lancang River, which were 142.53 × 108, 286.46 × 108 and 385.96 × 108 m3. The three EWR respectively occupied 25.10%, 50.46% and 67.98% of the average measured run-off (567.75 × 108 m3) of the Lancang River, and respectively occupied 18.63%, 37.45% and 50.45% of the natural run-off (765 × 108 m3) of the Lancang River.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号