共查询到20条相似文献,搜索用时 15 毫秒
1.
Mustafa Atakan Akar Emine Kekilli Oguz Bas Safak Yildizhan Hasan Serin Mustafa Ozcanli 《International Journal of Hydrogen Energy》2018,43(38):18046-18052
In the present study, hydrogen enrichment for biodiesel-diesel blends was evaluated to investigate the performance and emission characteristics of a compression ignition engine. Biodiesel was obtained from waste oil and blended to pure diesel fuel by volume fraction of 0%, 10% and 20%. After that, pure hydrogen was introduced through the intake air at different flow rates. Effects of pure hydrogen on performance and emission characteristics were investigated by evaluating power, torque, specific fuel consumption, CO, CO2 and NOx emissions. Experimental study revealed that waste oil biodiesel usage deteriorated performance and emission parameters except CO emissions. However, the enrichment test fuels with hydrogen fuel can improve performance characteristics and emission parameters, whereas it increased NOx emissions. Brake thermal efficiency and specific fuel consumption were improved when the test fuels enriched with hydrogen gas. Because of absence of carbon atoms in the chemical structure of the hydrogen fuel, hydrogen addition dropped CO and CO2 emissions but increment in cylinder temperature caused rising in NOx emissions. 相似文献
2.
The methanolysis of jojoba oil has been studied in the presence of tin powder, dibutyltin diacetate (C4H9)2Sn(OOCCH3)2, dioctyltin diacetate (C8H17)2Sn(OOCCH3)2, dibutyltin oxide (C4H9)2SnO, dioctyltin oxide (C8H17)2SnO, diphenyltin oxide (C6H5)2SnO, dibutyltin chloride dihydroxide (C4H9)2Sn(OH)2Cl, butyltinhydroxide hydrate (C4H9)Sn(=O)OH.xH2O, Ni nanoparticles and Pd nanoparticles act as catalysts. Among these, 1 weight % of dibutyltin diacetate shows the maximum conversion. Then, methanolysis of sunflower oil, neem oil, rocket seed oil and linseed oil into methyl esters studied in the presence of 1% dibutyltin diacetate as a catalyst and was compared their percentage conversions. The experimental yield for the conversion of jojoba oil, sunflower oil, neem oil, rocket seed oil and linseed oil into biodiesel was found to be 71%, 51%, 50.78%, 40.90% and 39.66%, respectively. The experimental yield of the conversion of jojoba oil into methyl esters was found to be increased up to 96% by increasing reaction time, without emulsion formation. The synthesis of jojoba seed oil biodiesel (JSOB), soybean oil biodiesel (SOB), neem oil biodiesel (NOB), rocket seed oil biodiesel (RSOB) and linseed oil biodiesel (LSOB) was confirmed by NMR (1H & 13C) and FT-IR analyses of biodiesel. 相似文献
3.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC. 相似文献
4.
Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine 总被引:1,自引:0,他引:1
Experiments has been carried out to estimate the performance, emission and combustion characteristics of a single cylinder; four stroke variable compression ratio multi fuel engine fuelled with waste cooking oil methyl ester and its blends with standard diesel. Tests has been conducted using the fuel blends of 20%, 40%, 60% and 80% biodiesel with standard diesel, with an engine speed of 1500 rpm, fixed compression ratio 21 and at different loading conditions. The performance parameters elucidated includes brake thermal efficiency, specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency and exhaust gas temperature. The exhaust gas emission is found to contain carbon monoxide, hydrocarbon, nitrogen oxides and carbon dioxide. The results of the experiment has been compared and analyzed with standard diesel and it confirms considerable improvement in the performance parameters as well as exhaust emissions. The blends when used as fuel results in the reduction of carbon monoxide, hydrocarbon, carbon dioxide at the expense of nitrogen oxides emissions. It has found that the combustion characteristics of waste cooking oil methyl ester and its diesel blends closely followed those of standard diesel. 相似文献
5.
Sukumar Puhan N. Vedaraman G. Sankaranarayanan Boppana V. Bharat Ram 《Renewable Energy》2005,30(8):1269-1278
In this investigation, Mahua Oil Ethyl Ester was prepared by transesterification using sulfuric acid (H2SO4) as catalyst and tested in a 4-stroke direct injection natural aspirated diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. Results showed that brake thermal efficiency of Mahua Oil Ethyl Ester (MOEE) was comparable with diesel and it was observed that 26.36% for diesel whereas 26.42% for MOEE. Emissions of carbon monoxide, hydrocarbons, oxides of nitrogen and Bosch smoke number were reduced around 58, 63, 12 and 70%, respectively, in case of MOEE compared to diesel. Based on this study, MOEE can be used a substitute for diesel in diesel engine. 相似文献
6.
Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine 总被引:3,自引:0,他引:3
In the present investigation the high viscosity of the jatropha curcas oil which has been considered as a potential alternative fuel for the compression ignition (C.I.) engine was decreased by blending with diesel. The blends of varying proportions of jatropha curcas oil and diesel were prepared, analyzed and compared with diesel fuel. The effect of temperature on the viscosity of biodiesel and jatropha oil was also studied. The performance of the engine using blends and jatropha oil was evaluated in a single cylinder C.I. engine and compared with the performance obtained with diesel. Significant improvement in engine performance was observed compared to vegetable oil alone. The specific fuel consumption and the exhaust gas temperature were reduced due to decrease in viscosity of the vegetable oil. Acceptable thermal efficiencies of the engine were obtained with blends containing up to 50% volume of jatropha oil. From the properties and engine test results it has been established that 40–50% of jatropha oil can be substituted for diesel without any engine modification and preheating of the blends. 相似文献
7.
Mustafa Ozcanli Mustafa Atakan Akar Ahmet Calik Hasan Serin 《International Journal of Hydrogen Energy》2017,42(36):23366-23372
Hydrogen and HHO enriched biodiesel fuels have not been investigated extensively for compression ignition engine. This study investigated the performance and emissions characteristics of a diesel engine fueled with hydrogen or HHO enriched Castor oil methyl ester (CME)-diesel blends. The production and blending of CME was carried out with a 20% volumetric ratio (CME20) using diesel fuel. In addition, the enrichment of intake air was carried out using pure HHO or hydrogen through the intake manifold with no structural changes – with the exception of the reduction of the amount of diesel fuel – for a naturally aspirated, four cylinder diesel engine with a volume of 3.6 L. Hydrogen amount was kept constant with a ratio of 10 L/min throughout the experiments. Engine performance parameters, including Brake Power, Brake Torque, Brake Specific Fuel Consumption and exhaust emissions – including NOx and CO, – were tested at engine speeds between 1200 and 2600 rpm. It is seen that HHO enriched CME has better results compared to pure hydrogen enrichment to CME. An average improvement of 4.3% with HHO enriched CME20 was found compared to diesel fuel results while pure hydrogen enriched CME20 fuel resulted with an average increase of 2.6%. Also, it was found that the addition of pure hydrogen to CME had a positive effect on exhaust gas emissions compared to that adding HHO. The effects of both enriched fuels on the engine performance were minimal compared to that of diesel fuel. However, the improvements on exhaust gas emissions were significant. 相似文献
8.
Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil 总被引:4,自引:0,他引:4
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel. 相似文献
9.
Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods 总被引:27,自引:0,他引:27
Ayhan Demirbas 《Progress in Energy and Combustion Science》2005,31(5-6):466-487
This paper reviews the production and characterization of biodiesel (BD or B) as well as the experimental work carried out by many researchers in this field. BD fuel is a renewable substitute fuel for petroleum diesel or petrodiesel (PD) fuel made from vegetable or animal fats. BD fuel can be used in any mixture with PD fuel as it has very similar characteristics but it has lower exhaust emissions. BD fuel has better properties than that of PD fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. There are more than 350 oil bearing crops identified, among which only sunflower, safflower, soybean, cottonseed, rapeseed and peanut oils are considered as potential alternative fuels for diesel engines. The major problem associated with the use of pure vegetable oils as fuels, for Diesel engines are caused by high fuel viscosity in compression ignition. Dilution, micro-emulsification, pyrolysis and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, some engine performance problems still exist. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2/s whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2/s. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s and the increases are highly regular. The purpose of the transesterification process is to lower the viscosity of the oil. The transesterfication of triglycerides by methanol, ethanol, propanol and butanol, has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification. 相似文献
10.
A single cylinder, constant speed, direct injection diesel engine was operated on neat Jatropha oil. Injection timing, injector opening pressure, injection rate and air swirl level were changed to study their influence on performance, emissions and combustion. Results have been compared with neat diesel operation. The injection timing was varied by changing the position of the fuel injection pump with respect to the cam and injection rate was varied by changing the diameter of the plunger of the fuel injection pump. A properly oriented masked inlet valve was employed to enhance the air swirl level. Advancing the injection timing from the base diesel value and increasing the injector opening pressure increase the brake thermal efficiency and reduce HC and smoke emissions significantly. Enhancing the swirl has only a small effect on emissions. The ignition delay with Jatropha oil is always higher than that of diesel under similar conditions. Improved premixed heat release rates were observed with Jatropha oil when the injector opening pressure is enhanced. When the injection timing is retarded with enhanced injection rate, a significant improvement in performance and emissions was noticed. In this case emissions with Jatropha oil are even lower than diesel. At full output, the HC emission level is 532 ppm with Jatropha oil as against 798 ppm with diesel. NO level and smoke with Jatropha oil are, respectively 1162.5 ppm and 2 BSU while they are 1760 ppm and 2.7 BSU with diesel. 相似文献
11.
A comparative study of vegetable oil methyl esters (biodiesels) 总被引:1,自引:0,他引:1
In the present study, rubber seed oil, coconut oil and palm kernel oil, which are locally available especially in Kerala (India), are chosen and their transesterification processes have been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized. Biodiesel from rubber seed oil (with high free fatty acid) was produced by employing two-step pretreatment process (acid esterification) to reduce acid value from 48 to 1.72 mg KOH/g with 0.40 and 0.35 v/v methanol-oil ratio and 1.0% v/v H2SO4 as catalyst at a temperature of 63(±2) °C with 1 h reaction time followed by transesterification using methanol-oil ratio of 0.30 v/v, 0.5 w/v KOH as alkaline catalyst at 55(±2) °C with 40 min reaction time to yield 98-99% biodiesel. Coconut oil and palm oil, being edible oils, transesterification with 0.25 v/v methanol-oil ratio, 0.50% w/v KOH as at 58(±2) °C, 20 min reaction time for coconut oil and 0.25% v/v methanol-oil ratio, 0.50% w/v KOH as alkaline catalyst at 60(±2) °C for palm kernel oil will convert them to 98-99% biodiesel. The brake thermal efficiency of palm oil biodiesel was higher with lower brake specific fuel consumption, but rubber seed oil biodiesel(ROB) showed less emission (CO and NOx) compared to other biodiesels. 相似文献
12.
Biofuel has so far been backed by government policies in the quest for low carbon fuel in the near future and promises to ensure energy security through partially replacing fossil fuels. At present biodiesel is mostly produced by transesterification reaction from oil-seed feedstock and has to conform to ASTM D6751 specifications. Biodiesel sustainability has sparked debate on the pros and cons of biodiesel and the question of food security. The use of waste cooking oil such as palm and coconut oil in diesel engines is more sustainable if they can perform similarly to ordinary diesel fuel (B0). This paper presents the experimental study carried out to evaluate emission and performance characteristics of a multi-cylinder diesel engine operating on waste cooking oil such as 5% palm oil with 95% ordinary diesel fuel (P5) and 5% coconut oil with 95% ordinary diesel fuel (C5). B0 was used for comparison purposes. The results show that there are reductions in brake power of 1.2% and 0.7% for P5 and C5 respectively compared with B0. In addition, reduction of exhaust emissions such as unburned hydrocarbon (HC), smoke, carbon mono-oxide (CO), and nitrogen oxides (NOx) is offered by the blended fuels. 相似文献
13.
Mohammed Kareemullah Asif Afzal K. Fazlur Rehman Kiran Shahapurkar Hurmathulla Khan Naveed Akram 《亚洲传热研究》2020,49(2):858-871
Research on and use of biodiesels for engines is growing continuously in the present era. Compression ignition (CI) engine performance for biodiesels of blends B20 from Acid oil, Mahua oil, and Castor oil is experimentally investigated. The engine performance analysis in the form of brake‐specific fuel consumption, brake‐specific energy consumption, brake thermal efficiency (BTE), exhaust gas temperature (EGT), and air fuel ratio are compared with diesel as base fuel. Emission characteristics like CO, CO2, NOx, and opacity are comparatively studied in detail for the considered biodiesels. The entire study is compared with the performance of engine when pure diesel is chosen as fuel. From the complete analysis it was observed that the BTE was higher for Acid oil and Mahua oil among the biodiesels used. And regarding CO emissions, Mahua oil showed lower effect than other biodiesels. Upto 6% increase in EGT of Mahua oil was obtained at no load and for other loads the percent reduced. For all the biodiesels the % enhancement in Co, CO2, and NOx was more than 60% at highest load compared with diesel. 相似文献
14.
Vegetable oils have been identified as the promising alternative source to replace fossil based fuel in the compression ignition (CI) engine. It is renewable and possesses characteristics that is similar to that of the diesel. Biodiesel, transesterifiedform of vegetable oil (VO), is now being commercially used in CI engines. However, biodiesel production from VO involves use of alcohols and chemicals which results the need of skilled labor and investment for its production. In view of this, many studies are also being carried out on the direct use of VO in the engine. The direct use of VO oil in engine is as good as that of the diesel. The superior quality of diesel however makes it better performance in engine as compared to the vegetable oil. Preheating and blending of VO are found to be the most common solution to overcome its inferior properties. The use of preheated and blended VO is found to improve the engine overall performance. This paper is focused exclusively on the one-to-one basis of study pertaining to the effect of neat, preheated and blended vegetable oils on diesel engine performance and emission through supplementation of illustrative figures from the various experimental studies. 相似文献
15.
The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NOX, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NOX) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation. 相似文献
16.
R. Alcantara J. Amores L. Canoira E. Fidalgo M. J. Franco A. Navarro 《Biomass & bioenergy》2000,18(6):515-527
Three fatty materials, soy-bean oil, used frying oil and tallow, were transformed into two different types of biodiesel, by transesterification and amidation reactions with methanol and diethylamine respectively. The ignition properties of these types of biodiesel were evaluated calculating the cetane index of the transesterification products, and the blending cetane number of the amide biodiesel blended with conventional diesel. Amide biodiesel enhances the ignition properties of the petrochemical diesel fuel, and it could account for the 5% market share that should be secured to biofuels by 2005. 相似文献
17.
Alla Zelenyuk Paul Reitz Mark Stewart Dan Imre Paul Loeper Cory Adams Mike Andrie David Rothamer David Foster Kushal Narayanaswamy Paul Najt Arun Solomon 《Combustion and Flame》2014
Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute, partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. 相似文献
18.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products. 相似文献
19.
为实现F-T柴油与生物柴油性能互补,构建高品质清洁替代燃料,文章将F-T柴油掺混10%,20%,30%的生物柴油配制成混合燃料,利用四缸增压柴油发动机台架进行转速为2 000 r/min的负荷特性试验,并与0号柴油进行对比。试验结果表明:随着生物柴油添加量的逐渐增大,混合燃料的滞燃期小幅度增大,燃烧始点提前,燃烧持续期增加;混合燃料的压力升高率随着生物柴油添加量的增大而增大,但均低于0号柴油;混合燃料振动信号的有效值及平均幅值随生物柴油含量的增加而增加,但均小于0号柴油;随着生物柴油添加量的增大,混合燃料的振动信号的峭度随之增加,燃烧冲击随之增大,其中,负荷为150 N·m时,混合燃料B30FT的峭度最大,比0号柴油高17.3%。 相似文献
20.
Jean-Claude M'Peko Diany L.S. Reis José E. De Souza Anderson R.L. Caires 《International Journal of Hydrogen Energy》2013
Biodiesel fuels were prepared from different vegetable oil sources (canola, soybean, sunflower, and corn) and studied through electrochemical impedance spectroscopy. The dielectric constant from these biofuels evidenced no important dependence on feedstock, suggesting basically no change in fuels' polarity from varying the raw materials. In a different way, huge variations of the electrical resistivity and relaxation frequency were found when comparing among the studied biodiesels. Our findings demonstrate that these variations are closely associated with changes in the biodiesel viscosity, which is known to modulate charge mobility and was feedstock dependent. Accordingly, the impedance spectroscopy is here revealed to be a sensitive, alternative and reliable analytical approach for distinguishing among different feedstock-related biodiesels and monitoring certain biofuels' properties, like viscosity and interrelated parameters, usually connected with fatty acid structural profiles in biodiesel fuels. 相似文献