首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La2O3 catalysts prepared at 923 K (La2O3-LT) and 1073 K (La2O3-HT) exhibit different photoluminescence properties due to notably different concentrations of ions in position of low coordination at the surface or coordinatively unsaturated surface sites (cus). The catalyst which exhibits the higher yields of photoluminescence due to the higher concentration of cus corresponds to the one which gives the higher C2+ selectivity in the oxidative methane coupling reaction. On leave of absence from Laboratoire de Réactivité de Surface, Université Pierre et Marie Curie, URA 1106-CNRS, 75252 Paris Cedex, France.  相似文献   

2.
We studied the oxidative coupling of methane over the LaF3/La2O3 (5050) catalyst. The catalyst was found active even at 873 K. At 1023 K, the C2 yield was 12.7% at 26.0% CH4 conversion and 49.1% C2 selectivity. It was found to be stable and had a lifetime not less than 50 h at 1023 K. The catalyst was effective in C2H6 conversion to C2H4. XRD results indicated that the catalyst was mainly rhombohedral LaOF. It is suggested that the catalyst has ample stoichiometric defects and generates active oxygen sites suitable for methane dehydrogenation.  相似文献   

3.
Isotopic transient techniques were applied to study oxidative coupling of methane over lanthanum oxide and strontium promoted La2O3 catalysts. Results of the18O2/16O2 isotopic exchange experiments indicate that Sr promotion increases oxygen uptake from the lattice of the catalyst. Oxygen self diffusion coefficients, which were determined for the series of lanthana catalysts, reach a maximum for the 1% Sr/La2O3. Steps of18O2 in the presence of a steady flow of methane over Sr/La2O3 catalysts, indicate that surface and bulk oxygen appear in the reaction products before gas-phase18O2. Steps of CO2 over catalysts in which lattice oxygen has been exchanged with18O2, show that gas/solid exchange involves over 50% of the lattice oxygen. Under reaction conditions, methane pulses with no gas-phase oxygen yield negligible amounts of products which indicates that methane interacts with lattice oxygen only in the presence of the gas-phase oxygen.  相似文献   

4.
Methane was pulsed over pure CuO and NiO as well as Cu/La2O3 and Ni/La2O3 catalysts at 600° C. Results indicate that the mechanisms for methane activation over copper and nickel are quite different. Over CuO, methane is converted to CO2 and H2O, most likely via the combustion mechanism; whereas metallic copper does not activate methane. Over NiO in the presence of metallic nickel sites, methane activation follows the pyrolysis mechanism to give CO, CO2, H2 and H2O. Similar results were obtained over the Cu/La2O3 and Ni/La2O3 catalysts. XRD investigations indicate that copper and nickel existed as CuLa2O4 and LaNiO3 respectively in the La2O3-supported catalysts. The effect of La2O3 on the activation of methane is discussed.  相似文献   

5.
A novel gel-network-coprecipitation process has been developed to prepare ultrafine Cu/ZnO/Al2O3 catalysts for methanol synthesis from CO2 hydrogenation. It is demonstrated that the gel-network-coprecipitation method can allow the preparation of the ultrafine Cu/ZnO/Al2O3 catalysts by homogeneous coprecipitation of the metal nitrate salts in the gel network formed by gelatin solution, which makes the metallic copper in the reduced catalyst exist in much smaller crystallite size and exhibit a much higher metallic copper-specific surface area. The effect of the gel concentration of gelatin on the structure, morphology and catalytic properties of the Cu/ZnO/Al2O3 catalysts for methanol synthesis from hydrogenation of carbon dioxide was investigated. The Cu/ZnO/Al2O3 catalysts prepared by the gel-network-coprecipitation method exhibit a high catalytic activity and selectivity in CO2 hydrogenation to methanol.  相似文献   

6.
The oxidative coupling of methane (OCM) has been found to be structure sensitive on La2O3 catalysts exhibiting different crystallite morphologies. Thin plates obtained by thermal decomposition of lanthanum nitrate at 650 °C are more selective on OCM reaction performed at 750 °C than the particles obtained by decomposition of the nitrate at 800 °C. It is assumed that the oxycarbonate observed is formed from the methane deep oxidation on the catalyst surface. This compound appears to act as an intermediate in the production of CO2 and is thus important hi the resulting selectivity.  相似文献   

7.
Addition of promoters, such as Li2O, Na2O, PbO, La2O3, MgCl2 and CaCl2, to MgO causes a large increase in its surface basicity (particularly strong basic sites) and catalytic activity/selectivity in oxidative coupling of methane, but the correlation between the basicity and C2-yield is poor, indicating that factors other than basicity are also important in deciding catalytic performance.  相似文献   

8.
Oxidative coupling of methane to higher hydrocarbons was investigated using two types of semiconductor catalysts, NbO (p-type) and Nb2O5 (n-type) at 1 atm pressure. The ratio of methane partial pressure to oxygen partial pressure was changed from 2 to 112 and the temperature was kept at 1023 K in the experiments conducted in a cofeed mode. The results indicated a strong correlation between C2+ selectivity performance and the electronic properties of the catalyst in terms of p-vs. n-type conductivity. The p-type semiconductor catalyst, NbO, had a larger selectivity (e.g. 95.92%) over the n-type Nb2O5 catalyst (23.08%) both at the same methane conversion of 0.64%. Catalyst characterization via X-ray diffraction, TGA and reaction studies indicated that NbO was transformed to Nb2O5 during the course of the reaction which limits catalyst life.  相似文献   

9.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed.  相似文献   

10.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

11.
A new route of methane utilization is presented, in which methane is converted to H2, CO and C2H4 simultaneously with equal mole ratio, in order that the produced mixture could be used in the synthesis of propanal via hydroformylation. Kinetically controlled free radical gas phase methane oxidation was combined with its catalytic oxidative coupling over Mn/Na2WO4/SiO2 to concomitantly acquire ethylene and syngas with close concentration. Under the optimal reaction condition, a mole ratio of CO:H2:C2H4=1.0:1:0.9 was obtained with a yield of 11.6% and a selectivity of 68% to the target products based on C, while the selectivity to CO2 is as low as 18.1%.  相似文献   

12.
The activity of the vanadium magnesium binary oxides supported on Cact, SiO2, γ-Al2O3 and ZnO in the dehydrogenation of isobutane to isobutene under the carbon dioxide or inert gas atmosphere was investigated. The highest isobutene yield (34.8%) was obtained over active carbon supported catalyst. The role of carbon dioxide in the dehydrogenation process was determined on the basis of additional tests: the RWGS reaction, gasification of coke and regeneration of partially reduced catalysts. The temperature-programmed techniques (TPR-H2, TPD-NH3 and TPD-CO2) were used to characterize the catalysts.  相似文献   

13.
A large amount of more graphitic carbon nanotubes with a narrow size distribution was produced from catalytic decomposition of CH4 over pre-reduced LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4. The structure and component of fresh and reduced LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4 were determined by X-ray diffraction (XRD). The carbon nanotubes obtained were characterized by means of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Thermal oxidation of carbon nanotubes in air was made by thermogravimetric experiments (TG). The results revealed that the value of La/Ni in different catalyst precursors influences the diameter distribution and graphitic degree of carbon nanotubes. Lower La/Ni leads to wider diameter and higher graphitic degree of carbon nanotubes.  相似文献   

14.
The effects of Mn/Na2WO4, Li, and CaO loading on the monoclinic Sm2O3 catalyst were investigated for the oxidative coupling of methane using O2 or N2O as an oxidant. The catalysts were prepared by wet impregnation method and characterized by XRD, BET, CO2-TPD, and XPS analysis. Impregnation of Mn/Na2WO4 on monoclinic Sm2O3 resulted in the formation of Sm2?xMnxO3 phase, decreasing the catalytic performance. Li impregnation increased the C2 selectivity but decreased the catalytic activity. The SmLiO2 formation increased the catalytic activity and selectivity. High amounts of CaO impregnation increased the C2 selectivity of monoclinic Sm2O3 without a loss in catalytic activity. 6Li/m-Sm2O3 were found unstable due to the Li loss from the catalyst. The 15CaO/m-Sm2O3 was quite stable and showed 8.2% ethylene yield with N2O use, much higher than that was obtained with the well-known 2Mn/5Na2WO4/SiO2 and 4Li/MgO catalysts. N2O was more selective than O2 as an oxidant and enhanced ethylene formation.  相似文献   

15.

Oxidative transformations of methane on a catalyst (0.9 wt % of La2O3 + 0.1 wt % of CeO2)/MgO located inside the pores of a ceramic membrane occur at temperatures as low as 550°C with a high selectivity that was not previously observed, and terminate mainly with the formation of synthesis gas (carbon monoxide and hydrogen). The observed result is composed of the thermolysis reaction of methane yielding hydrogen and carbon, and comprises the subsequent reverse Buduar reaction. The reforming of carbon dioxide runs intensively when a methane-carbon dioxide mixture is fed into a membrane reactor at 650°C.

  相似文献   

16.
Unsteady reaction behaviour with periodic fluctuations in reaction temperature and concentration indicating symmetric oscillations in the oxidative coupling of methane over La2O3 (obtained from lanthanum acetate by thermal decomposition in air at 600 °C and subsequently calcined in N2 at 750 °C) above 550 °C but below 700 °C has been observed.  相似文献   

17.
Ce4+ doped Ba3 WO6 complex oxides were used as catalysts for methane oxidative coupling (MOC), and characterized by XPS and O2-TPD-MS techniques. The results indicate that the ratio of electrophilic oxygen species O and O 2 to lattice oxygen on the surface is crucial for C2 selectivity. By adjusting the relative amount of cations in Ba-W-Ce complex oxides with perovskite superstructure interstitial oxygen species can be created which benefits C2 selectivity by raising the relative amount of (O + O 2 ) on the surface.  相似文献   

18.
H.X. Dai  C.F. Ng  C.T. Au 《Catalysis Letters》2000,67(2-4):183-192
The catalytic performances and characterization of the catalysts La1.6Sr0.4CuO3.852, La1.6Sr0.4CuO3.857F0.143, and La1.6Sr0.4 CuO3.856Cl0.126 have been investigated for the oxidative dehydrogenation of ethane (ODE) to ethene. X‐ray diffraction results indicated that the three catalysts have a single‐phase tetragonal K2NiF4-type structure. The incorporation of fluoride or chloride ions in the La1.6Sr0.4CuO4-δ lattice can significantly enhance C2H6 conversion and C2H4 selectivity. We observed 83.2% C2H6 conversion, 76.7% C2H4 selectivity, and 63.8% C2H4 yield over La1.6Sr0.4CuO3.857F0.143> and 79.6% C2H6 conversion, 74.6% C2H4 selectivity, and 59.4% C2H4 yield over La1.6Sr0.4CuO3.856Cl0.126 under the reaction conditions of C2H6/O2/N2 molar ratio 2/1/3.7, temperature 660°C, and space velocity 6000 ml h-1 g-1. With the rise in space velocity, C2H6 conversion decreased, whereas C2H4 selectivity increased. Life studies showed that the two catalysts were durable within 60 h of on‐stream ODE reaction. Based on the results of X‐ray photoelectron spectroscopy, O2 temperature-programmed desorption, and C2H6 and C2H6/O2/N2 (2/1/3.7 molar ratio) pulse studies, we conclude that (i) the inclusion of halide ions in the La1.6Sr0.4CuO lattice could promote lattice oxygen mobility, and (ii) the O- species accommodated in oxygen vacancies and desorbed below 600°C favor ethane complete oxidation whereas the lattice oxygen species desorbed in the 600–700°C range are active for ethane selective oxidation to ethene. By regulating the oxygen vacancy density and Cu3/Cu ratio in the K2NiF4-type halo-oxide catalyst, one can generate a durable catalyst with good performance for the ODE reaction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The catalytic partial oxidation of methane with oxygen to produce synthesis gas was studied under a wide range of conditions over supported ruthenium catalysts. The microreador results demonstrated the high activity of ruthenium catalysts for this reaction. A catalyst having as little as 0.015% (w/w) Ru on Al2O3 gave a higher synthesis gas selectivity than a catalyst having 5% Ni on SiO2. XANES measurements for fresh and used catalyst samples confirmed that ruthenium is reduced from ruthenium dioxide to ruthenium metal early during the experiments. Ruthenium metal is thus the active element for the methane partial oxidation reaction.  相似文献   

20.
This paper presents results which were obtained for the flameless combustion of methane over the Pd(PdO)/Al2O3 catalyst by using the steady state isotopic transient kinetic analysis method. During the reaction switches between 16O2/Ar/CH4/He and 18O2/CH4/He were carried out. The obtained results indicate the presence of large amounts of oxygen as well as of intermediates leading to the formation of carbon dioxide on the surface of the palladium catalyst. Additionally, information was obtained proving that the complete oxidation of methane over Pd/Al2O3 catalyst proceeds according to the Mars and van Krevelen redox mechanism. With the increase of the reaction temperature there is an increase in the number of active centres on the Pd(PdO)/Al2O3 catalyst surface—a larger amount of oxygen from the lattice of the catalyst is accessible for the reaction of methane oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号