首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of the clonotypic variable region, the immunoglobulin (Ig) is a tumor-specific antigen on B cell neoplasms. We report that engagement of the B cell antigen receptor (BcR) promotes presentation of peptides derived from the B cell's intrinsic Ig to major histocompatibility complex (MHC) class II-restricted T cells. Thus, anti-Ig endowed normal, ex vivo B lymphocytes from H-2d, Ig constant heavy chain allotype b (IgCHb) mice with the capacity to stimulate an I-Ad-restricted T cell clone which recognizes the gamma 2ab 435-451 allopeptide. The corresponding self gamma 2aa peptide is cryptic and 6000-fold less antigenic than the gamma 2ab allopeptide. Even so, the syngeneic B cell lymphoma A20 which expresses surface(s) IgG2aa, was also recognized by the T cells after BcR ligation. Thus, anti-Ig triggered the disclosure of a cryptic tumor antigen determinant. We propose that autoantigens, by engaging the BcR of self-reactive B cells, induce presentation of intrinsic Ig peptides to which the T helper cell (Th) repertoire is not tolerant. In this way, B cells with anti-self potential may be activated without Th recognition of nominal autoantigen.  相似文献   

2.
Hodgkin's disease is a common malignancy of the lymphoid system. Although the scarce Hodgkin and Reed-Sternberg (HRS) tumor cells in involved tissue synthesize major histocompatibility complex (MHC) class II and costimulatory molecules such as CD40 or CD86, it is unclear whether these tumor cells are operational antigen-presenting cells (APC). We developed an immunofluorescence-based assay to determine the number of MHC class II molecules present on the surface of single living HRS cells. We found that in fresh Hodgkin's disease lymph node biopsies, a subset of HRS cells express a substantial number of surface MHC class II molecules that are occupied by MHC class II-associated invariant chain peptides (CLIP), indicating deficient loading of MHC class II molecules with antigenic peptides. Cultured Hodgkin's disease-derived (HD) cell lines, however, were found to express few MHC class II molecules carrying CLIP peptides on the cell surface and were shown to generate sodium dodecyl sulphate (SDS)-stable MHC class II alphabeta dimers. In addition to showing deficient MHC class II antigen presentation in a subset of HRS cells, our results show that the widely used HD-cell lines are not ideal in vitro models for the disease. The disruption of MHC class II-restricted antigen presentation in HRS cells could represent a key mechanism by which these tumor cells escape immune surveillance.  相似文献   

3.
Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B-/- or Cat D-/- antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B-/- splenocytes, as it did in Cat D-/- cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.  相似文献   

4.
Stimulation of CD4(+) helper T lymphocytes by antigen-presenting cells requires the degradation of exogenous antigens into antigenic peptides which associate with major histocompatibility complex (MHC) class II molecules in endosomal or lysosomal compartments. B lymphocytes mediate efficient antigen presentation first by capturing soluble antigens through clonally distributed antigen receptors (BCRs), composed of membrane immunoglobulin (Ig) associated with Ig-alpha/Ig-beta heterodimers which, second, target antigens to MHC class II-containing compartments. We report that antigen internalization and antigen targeting through the BCR or its Ig-alpha-associated subunit to newly synthesized class II lead to the presentation of a large spectrum of T cell epitopes, including some cryptic T cell epitopes. To further characterize the intracellular mechanisms of BCR-mediated antigen presentation, we used two complementary experimental approaches: mutational analysis of the Ig-alpha cytoplasmic tail, and overexpression in B cells of dominant negative syk mutants. Thus, we found that the syk tyrosine kinase, an effector of the BCR signal transduction pathway, is involved in the presentation of peptide- MHC class II complexes through antigen targeting by BCR subunits.  相似文献   

5.
As several reinjection procedures have shown encouraging results in terms of imaging, we investigated whether the kinetics of thallium-201 would differ between the standard stress-redistribution-reinjection approach and the stress-immediate reinjection approach. In 53 consecutive patients with undiagnosed chest pain, 75 MBq (2 mCi) 201Tl was injected at maximal exercise. In 26 of these patients (group I), 37 MBq (1 mCi) 201Tl was reinjected immediately after completing the exercise images (the immediate reinjection procedure) and in 27 patients (group II), 37 MBq (1 mCi) 201Tl was reinjected after completing 3-h redistribution images (the standard reinjection procedure). Mean peak 201Tl blood activity after exercise was 17.7+/-12.5 kBq/ml (4.8+/-3.4 mCi/ml) for group I versus 16.4+/-9.2 kBq/ml (4.4+/-2.5 mCi/ml) for group II (NS). The relative increase in 201Tl blood activity after reinjection of half the initial dose [37 MBq (1 mCi)] exceeded 50% of the initial peak in both groups. The relative amount of 201Tl delivered to the myocardium was assessed by the area under the curve after both exercise and reinjection, and was 117%+/-72% for group I and 112%+/-73% for group II (NS). Blood clearance of 201Tl was at least biexponential. Mean early decay constants (lambda 1) after exercise and reinjection were 0.30+/-0.18 min-1 and 0.22+/-0.046 min-1 respectively for group I (T 1/2 2.3 min and 3.2 min respectively, NS), and 0.30+/-0.12 min-1 and 0.24+/-0.07 min-1 respectively for group II (T1/2 2.3 min and 2.9 min respectively, NS). For both procedures no significant differences were found between lambda 1 after exercise and lambda 1 after injection. The mean late clearance (lambda 2) from the blood was 0.032+/-0.056 min-1 and 0.012+/-0.012 min-1 respectively for group I (T1/2 21.6 min and 57.7 min respectively, NS), and 0.036+/-0.030 min-1 and 0.014+/-0.014 min-1 respectively for group II (T1/2 19.3 min and 49.5 min respectively, NS). Also, no significant differences were found between lambda 2 after exercise for both groups and between lambda 2 after reinjection for both groups. We conclude that reinjection of 37 MBq (1 mCi) 201Tl (half the initial dose) results in a relative increase in the initial peak and a relative increase in the amount of 201Tl delivered to the myocardium of more than 50% for both the standard and the immediate reinjection procedure. The clearance of 201Tl from the blood was not influenced by exercise or by the time of reinjection. Based on 201Tl kinetics as measured in the peripheral blood, there is no reason to postpone reinjection until 3-4 h following exercise.  相似文献   

6.
The presentation of antigenic peptides by class I major histocompatibility complex molecules plays a central role in the cellular immune response, since immune surveillance for detection of viral infections or malignant transformations is achieved by CD8+ T lymphocytes which inspect peptides, derived from intracellular proteins, bind to class I molecules on the surface of most cells. The transporter associated with antigen processing selectively translocates cytoplasmically derived peptides of appropriate sequence and length into the lumen of the endoplasmic reticulum where they associate with newly synthesized class I molecules. The translocated peptides are generated by multicatalytic and multisubunit proteasomes which degrade cytoplasmic proteins in a ATP-ubiquitin-dependent manner. This review discusses our current molecular understanding of class I antigen processing and presentation.  相似文献   

7.
Immunization of mice with mixtures of listeriolysin, a pore-forming hemolysin secreted by the pathogenic bacterium Listeria monocytogenes, together with soluble ovalbumin, nucleoprotein of influenza virus, or beta-galactosidase of Escherichia coli, resulted in strong cytotoxic CD8 T cell responses to each of the respective passenger proteins in vivo. Also, the concomitant addition of either protein with listeriolysin to target cells elicited efficient sensitization of these cells which could be attributed to the pore-forming activity of listeriolysin. This response was dependent upon a functional TAP transporter and was inhibitable by brefeldin A, indicating the transfer of the soluble proteins into the cytosol and the classical major histocompatibility (MHC) class I presentation pathway. The treatment of target cells with listeriolysin under our experimental conditions did not affect cell viability and the pores generated by listeriolysin treatment were repaired within 60 min. Introduction of soluble proteins into the MHC class I presentation pathway by listeriolysin provides a powerful system to study the cytotoxic response towards intracellular pathogens and would allow for rapid screening of potential antigens in vaccine formulations.  相似文献   

8.
The precise mechanisms of failure of immunological tolerance to self proteins are not known. Major histocompatibility complex (MHC) susceptibility alleles, the target peptides, and T cells with anti-self reactivity must be present to cause autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a murine model of a human autoimmune disease, multiple sclerosis. In EAE, residues 1-11 of myelin basic protein (MBP) are the dominant disease-inducing determinants in PL/J and (PL/J x SJL/J)F1 mice. Here we report that a six-residue peptide (five of them native) of MBP can induce EAE. Using peptide analogues of the MBP-(1-11) peptide, we demonstrate that only four native MBP residues are required to stimulate MBP-specific T cells. Therefore, this study demonstrates lower minimum structural requirements for effective antigen presentation by MHC class II molecules. Many viral and bacterial proteins share short runs of amino acid similarity with host self proteins, a phenomenon known as molecular mimicry. Since a six-residue peptide can sensitize MBP-specific T cells to cause EAE, these results define a minimum sequence identity for molecular mimicry in autoimmunity.  相似文献   

9.
Cells from the bone marrow can present peptides that are derived from tumors, transplants, and self-tissues. Here we describe how dendritic cells (DCs) process phagocytosed cell fragments onto major histocompatibility complex (MHC) class II products with unusual efficacy. This was monitored with the Y-Ae monoclonal antibody that is specific for complexes of I-Ab MHC class II presenting a peptide derived from I-Ealpha. When immature DCs from I-Ab mice were cultured for 5-20 h with activated I-E+ B blasts, either necrotic or apoptotic, the DCs produced the epitope recognized by the Y-Ae monoclonal antibody and stimulated T cells reactive with the same MHC-peptide complex. Antigen transfer was also observed with human cells, where human histocompatibility leukocyte antigen (HLA)-DRalpha includes the same peptide sequence as mouse I-Ealpha. Antigen transfer was preceded by uptake of B cell fragments into MHC class II-rich compartments. Quantitation of the amount of I-E protein in the B cell fragments revealed that phagocytosed I-E was 1-10 thousand times more efficient in generating MHC-peptide complexes than preprocessed I-E peptide. When we injected different I-E- bearing cells into C57BL/6 mice to look for a similar phenomenon in vivo, we found that short-lived migrating DCs could be processed by most of the recipient DCs in the lymph node. The consequence of antigen transfer from migratory DCs to lymph node DCs is not yet known, but we suggest that in the steady state, i.e., in the absence of stimuli for DC maturation, this transfer leads to peripheral tolerance of the T cell repertoire to self.  相似文献   

10.
To identify the intracellular site(s) of formation of an endogenous class II/peptide complex in a human B cell line, we employed kinetic pulse-chase labeling experiments followed by subcellular fractionation by Percoll density gradient centrifugation and immunogold labeling on ultrathin cryosections. For direct demonstration of assembly of such complexes, we used the monoclonal antibody YAe, which detects an endogenous complex of the mouse class II molecule I-Ab with a 17-amino acid peptide derived from the alpha chain of HLA-DR (DR alpha52-68). We show that in human B lymphocytes, these class II/peptide complexes assemble and transiently accumulate in major histocompatibility complex class II-enriched compartments before reaching the cell surface.  相似文献   

11.
We have examined the interactions of various peptides with the mouse class II major histocompatibility complex molecule I-Ak. The peptides were derived from the model protein hen egg white lysozyme (HEL). The immunodominant peptide of HEL is a 10-mer, residues 52-61. Our previous work established that this sequence contains the key residues for binding and presentation to T cells. Now we show that the binding of this 10-mer sequence resulted in complexes of I-Ak and peptide that, in SDS/PAGE (without boiling the protein), rapidly dissociated from the component alpha and beta chains. The binding interactions were studied in vitro, by incubating purified I-Ak and radiolabeled peptide, or ex vivo, by using antigen-presenting cells incubated with peptides. Peptides with additional residues at either the amino or carboxyl terminus behaved dramatically differently. Complexes of I-Ak with the longer peptides were stable to SDS/PAGE. Very few amino acid additions result in the change from unstable to stable complexes. The important issue here is that when cultured with HEL, antigen-presenting cells selected the HEL peptides containing the 52-61 sequences that favored stability [Nelson, C. A., Roof, R. W., McCourt, D. W. & Unanue, E. R. (1992) Proc. Natl., Acad. Sci. USA 89, 7380-7383]. Also, from other studies, such sequences correlate with a high immunogenicity of the peptide. We conclude that there are structural features of peptides that change the stability of the class II molecule and that are independent of the "core" peptide seen by the T cells.  相似文献   

12.
In a murine model of platelet alloimmunization, we examined the definitive role that mononuclear cells (MC) have in modulating platelet immunity by using platelets from severe combined immunodeficient (SCID) mice. CB.17 (H-2(d)) SCID or BALB/c (H-2(d)) mouse platelets were transfused weekly into fully allogeneic CBA (H-2(k)) mice and antidonor antibodies measured by flow cytometry. MC levels in BALB/c platelets were 1.1 +/- 0.6/microL and SCID mouse platelets could be prepared to have significantly lower (<0. 05/microL) MC numbers. Transfusions with 10(8) BALB/c platelets (containing approximately 100 MC/transfusion) stimulated IgG antidonor antibodies in 100% of the recipients by the fifth transfusion, whereas 10(8) SCID mouse platelets (containing approximately 5 MC/transfusion) stimulated higher-titered IgG alloantibodies by the second transfusion. When titrations of BALB/c peripheral blood MC were added to the SCID mouse platelets, levels approaching 1 MC/microL reduced SCID platelet immunity to levels similar to BALB/c platelets. Characterization of the alloantibodies showed that the low levels of MC significantly influenced the isotype of the antidonor IgG; the presence of 1 MC/microL was associated with induction of noncomplement fixing IgG1 antidonor antibodies, whereas platelet transfusions, devoid of MC (<0. 05/microL), were responsible for complement-fixing IgG2a production. When magnetically sorted defined subpopulations of MC were added to the SCID platelets, major histocompatability complex (MHC) class II positive populations, particularly B cells, were found to be primarily responsible for the reduced SCID mouse platelet immunity. The presence of low numbers of MC within the platelets was also associated with an age-dependent reduction in platelet immunogenicity; this relationship however, was not observed with SCID mouse platelets devoid of MC. The results suggest that a residual number of MHC class II positive B cells within allogeneic platelets are required for maximally reducing alloimmunization.  相似文献   

13.
Availability of mice with a targeted disruption of the interferon gamma (IFN-gamma) receptor gene (IFN-gamma R0/0 mice) made it possible to examine parameters of macrophage activation in the absence of a functional IFN-gamma receptor. We asked to what extent other cytokines could replace IFN-gamma in the induction of nitric oxide or major histocompatibility complex class II antigen (Ia) expression in peritoneal macrophages. In thioglycollate-elicited macrophages from wild-type mice, tumor necrosis factor (TNF) alone was virtually ineffective in inducing release of NO2- (the endproduct of nitric oxide generation), but TNF enhanced NO2- release in the presence of IFN-gamma. In macrophages from IFN-gamma R0/0 mice, which were unresponsive to IFN-gamma, TNF completely failed to stimulate NO2- release. The stimulatory actions of IFN-alpha/beta on NO2- release were indistinguishable in wild-type and IFN-gamma R0/0 macrophages: IFN-alpha/beta was ineffective on its own, showed marginal stimulation of NO2- release in combination with TNF, and was moderately effective in the presence of lipopolysaccharide. The level of constitutive Ia antigen expression was not significantly different in peritoneal macrophages from wild-type and IFN-gamma R0/0 mice. An increased Ia expression was induced by IL-4 and granulocyte-macrophage colony-stimulating factor in both wild-type and IFN-gamma R0/0 macrophages, but the magnitude of this induction was less than with optimal concentrations of IFN-gamma in macrophages from wild-type mice. IFN-alpha/beta showed only a minor stimulatory effect on Ia expression in both wild-type and IFN-gamma R0/0 macrophages. Simultaneous treatment of wild-type macrophages with IFN-alpha/beta and IFN-gamma reduced the IFN-gamma-induced Ia expression in wild-type macrophages, but IFN-alpha/beta did not show an inhibitory effect on IL-4- or granulocyte-macrophage-colony-stimulating factor-induced Ia expression in either wild-type or IFN-gamma R0/0 macrophages. The important role of IFN-gamma in the regulation of the induced expression of major histocompatibility complex class II antigen was confirmed by showing that after systemic infection with the BCG strain of Mycobacterium bovis resident peritoneal macrophages from IFN-gamma R0/0 mice had a lower level of Ia expression than macrophages from wild-type mice. The inability of other cytokines to substitute fully for IFN-gamma in macrophage activation helps to explain the earlier observed decreased resistance of IFN-gamma R0/0 mice to some infections.  相似文献   

14.
The molecular recognition of two superantigens with class II major histocompatibility complex molecules was simulated by using protein-protein docking. Superantigens studied were staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) in their crystallographic assemblies with HLA-DR1. Rigid-body docking was performed sampling configurational space of the interfacial surfaces by employing a strategy of partitioning the contact regions on HLA-DR1 into separate molecular recognition units. Scoring of docked conformations was based on an electrostatic continuum model evaluated with the finite-difference Poisson-Boltzmann method. Estimates of nonpolar contributions were derived from the buried molecular surface areas. We found for both superantigens that docking the HLA-DR1 surface complementary with the SEB and TSST-1 contact regions containing a homologous hydrophobic surface loop provided sufficient recognition for the reconstitution of native-like conformers exhibiting the highest-scoring free energies. For the SEB complex, the calculations were successful in reproducing the total association free energy. A comparison of the free-energy determinants of the conserved hydrophobic contact residue indicates functional similarity between the two proteins for this interface. Though both superantigens share a common global association mode, differences in binding topology distinguish the conformational specificities underlying recognition.  相似文献   

15.
Maternal immunoglobulin G (IgG) in milk is transported to the bloodstream of newborn rodents via an Fc receptor (FcRn) expressed in the gut. The receptor shows a striking structural similarity to class I major histocompatibility complex (MHC) molecules, being composed of a related heavy chain and the identical light chain (beta 2-microglobulin). FcRn binds IgG at the pH of milk in the proximal intestine (pH 6.0-6.5) and releases it at the pH of blood (pH approximately 7.5). We have compared the stability of a soluble form of FcRn in these two pH ranges and find that the heterodimer is markedly more stable at the permissive pH for IgG binding. Using the rate of beta 2m exchange as a correlate of heterodimer stability, we find that exchange is more than 10 times slower at pH 6.1 compared to pH 7.8. Thermal denaturation profiles of FcRn heterodimers at pH 8.0 indicate a two-step, sequential heavy-chain (Tm = 52 degrees C) and beta 2m (Tm = 67 degrees C) denaturation. By contrast, at pH 6.0, a single transition is observed, centered at 62 degrees C, corresponding to denaturation of both chains. The striking difference in stability does not appear to be correlated with the binding of peptide as in class I MHC molecules, because analysis of purified FcRn by acid dissociation and sequencing suggests that FcRn is not associated with cellular peptides. These results are indicative of pH-dependent conformational changes in the FcRn heterodimer, which may be related to its physiological function.  相似文献   

16.
Effects of carbon tetrachloride treatment and portacaval shunt surgery on exogenous chylomicron retinyl ester clearance from rat plasma were analyzed assuming three-compartment model kinetics. In rats with cirrhosis and in those with Eck fistulas, the relative pool size of compartment 2 decreased (0.20 and 0.36, respectively) compared with controls (0.82). The relative mass of compartment 3 significantly increased in rats with cirrhosis (1.55) or Eck fistula (0.19) compared with control rats (0.11). The cirrhotic and Eck fistula groups were indistinguishable on the basis of these parameters and on the basis of indocyanine green test values. However, the cirrhosis and Eck fistula groups differed clearly from each other with respect to fractional efflux rate constants (l2, l3), where the constant l2 is from compartment 2 and the l3 is from compartment 3. Both values decreased in cirrhotic rats, suggesting that the hepatic uptake of chylomicron retinyl esters was impaired by carbon tetrachloride. On the other hand, Eck fistula rats did experience dramatic increases in l3, implying that the hepatic uptake of chylomicron retinyl esters from compartment 3 was enhanced by portacaval shunting. Elevation of the plasma estrogen level observed in Eck fistula rats may be responsible for the induction of low-density lipoprotein receptors on hepatocytes and for the subsequent enhancement of l3. These results suggest that a three-compartment model of plasma retinyl ester disappearance kinetics gives important quantitative information about hepatic function. Clinical application of the chylomicron retinyl ester clearance test is discussed for estimating hepatic function reserves and for differential diagnosis of portal hypertension.  相似文献   

17.
Immunohistochemical techniques were used to assess major histocompatibility complex (MHC) class II expression by enterocytes and lamina propria cells in the canine intestinal tract. Duodenal enterocyte class II expression was faint and limited to the lower crypt region whereas jejunal and ileal enterocyte expression was stronger, being present in both crypt and villus areas. Enterocyte staining was of greatest intensity in crypts adjacent to Peyer's patches and intense membrane staining of most Peyer's patch lymphocytes was also seen. Enterocyte MHC class II expression in the colon was largely limited to the lower crypt region. Within the lamina propria, of all intestinal sites examined, a heterogeneous population of cells were MHC class II positive and these had morphological features of macrophages and dendritic cells. Lymphocytes, plasma cells, fibroblasts and vascular endothelium were not stained. Definition of constitutive expression of MHC class II within the canine intestine may be important in identifying upregulation of this molecule in inflammatory bowel diseases.  相似文献   

18.
The endogenous major histocompatibility complex (MHC) class II presentation pathway allows biosynthesized, intracellular antigens access for presentation to MHC class II-restricted T cells. This pathway has been well documented in B cells and fibroblasts, but may not be universally available in all antigen-presenting cell types. This study compares the ability of different antigen-presenting cells, expressing endogenous C5 protein (fifth component of mouse complement) as a result of transfection, to present their biosynthesized C5 to MHC class II-restricted T cells. B cells and fibroblasts expressing C5 were able to present several epitopes of this protein with MHC class II molecules, whereas macrophages were unable to do so, but readily presented C5 from an extracellular source. However, macrophage presentation of endogenous C5 could be achieved when they were treated with low doses of the lysosomotropic agent ammonium chloride. In the presence of an inhibitor of autophagy, presentation of endogenous C5 was abrogated, indicating that biosynthesized C5 is shuttled into lysosomal compartments for degradation before making contact with MHC class II molecules. Taken together, this suggests that proteolytic activity in lysosomes of macrophages may be excessive, compared with fibroblasts and B cells, and destroys epitopes of the C5 protein before they can gain access to MHC class II molecules. Thus, there are inherent differences in presentation pathways between antigen-presenting cell types; this could reflect their specialized functions within the immune system with macrophages focussing preferentially on internalization, degradation, and presentation of extracellular material.  相似文献   

19.
Molecules encoded by the major histocompatibility complex (MHC) are polymorphic integral membrane proteins adapted to the presentation of peptide fragments of foreign antigens to antigen-specific T-cells. The diversity of infectious agents to which an immune response must be mounted poses a unique problem for receptor-ligand interactions; how can proteins whose polymorphism is necessarily limited bind an array of peptides almost infinite in its complexity? Both MHC class I and class II determinants have achieved this goal by harnessing a limited number of peptide side chains to anchor the epitope in place while exploiting conserved features of peptide structure, independent of their primary sequence. While class I molecules interact predominantly with the N- and C-termini of peptides, class II determinants form an extensive hydrogen bonding network along the length of the peptide backbone. Such a strategy ensures high-affinity binding, while selectively exposing the unique features of each ligand for recognition by the T-cell receptor.  相似文献   

20.
Molecules encoded by a single major histocompatibility complex class I gene can associate with any one of a large number of peptide ligands. T-cell receptors have the capacity to discriminate among these peptide-class I complexes and in many cases bind only a single peptide-class I complex with sufficient affinity to trigger effector function. In contrast, it is generally assumed that class I-specific alloantibodies are indifferent to peptide heterogeneity, being directed toward allele-specific determinants on the molecule. In this report, three monoclonal antibodies were used to precipitate Kb molecules from cell lysates. Surprisingly, in each case a different set of peptides was found to be associated with Kb as detected by peptide-dependent Kb-specific alloreactive cytolytic T lymphocytes or by biochemical resolution. These results demonstrate that the affinity of binding by alloantibodies can be affected by the endogenous peptide ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号