首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
快速凝固Ni—50Al—5Si—2Fe—0.25Ce合金的催化特性研究   总被引:3,自引:0,他引:3  
张国胜  王西科 《功能材料》1999,30(4):433-435
制备了快速凝固Ni-50Al-5Si-2Fe-0.25Ce合金,用碱洗抽Al的方法另以活化,对活化后催化剂的结构特征及其十八腈加氢催化性能进行了研究。结果表明,快凝Ni-50Al-5Si-2Fe-0.25Ce前置体合金中含有较多的Ni2Al3及NiAl3相;活化后所得到的新型催化剂与常规RaneyNi相比,其孔径尺寸减小,f.c.c.Ni晶粒细化,点阵参数扩大,在制备伯胺和仲胺两种选择性反应中均显  相似文献   

2.
用单辊快速凝固法制备了Ni原子分数为0.53-0.60的Ni-Al金属间化合物薄带,研究了成分与微观组织的关系,发现试样均为B2型单相NiAl,Ni0.53Al0.47的快速凝固组织为10μm左右的等轴晶,Ni0.56Al0.44-Ni0.6Al0.4的组织分别为5μm左右的不规则和规则柱状晶,发现近理想配比的NiAl在快速凝固时形成针状晶亚结构。  相似文献   

3.
快速凝固Ni-34.6a.%Al薄带经1523K退火2h并以较快速度冷却扣形成以NiAl马氏体为基体,γ-Ni3Al沿晶界网状分布和少量残β-NiAl的组织,退火,室温弯曲延性良好。  相似文献   

4.
研究了XD工艺原位生成NiAlFe-TiB2复合材料的显微组织和界面结构,分析了Fe对材料压缩性能的影响及微观机制,加入25%Fe元素后,形成的Fe(Ni,Al,Ti)新相以枝晶间的形式连接于基体之间以及基体与增强颗粒之间,提高了材料的塑性。运用高分辨电力显微术分析研究了压缩变形后增强颗粒与基体的界面。  相似文献   

5.
低密阻尼金属/金属复合体材料的组织与性能研究   总被引:4,自引:1,他引:3  
采用快速凝固/粉末冶金法成功地研制出Al-7.09%Fe-1.34%Mo-1.45%Si(FMS0714)合金及其金属/金属复合体材料FMS0714/15%Al和FMS0714/10%(Zn-30%Al),考察了其组织、拉伸性能、阻尼性能和密度,产散锻铝LD7CS合金进行了对比。结果表明:FMS0714合金本身就具有较好的拉伸与阻尼性能。添加纯Al和Zn-30%Al合金粉均使其强度下降,而 FMW  相似文献   

6.
研究了不同Y含量对铸造Ni50Al20Fe30合金与性能的影响。结果表明,微量Y的加入可以改善Ni50Al20Fe30合金的强强度与塑性。Y含量为0.05wt%-0.1wt%是合金最佳含量范围。微量Y的加入影响合金的共晶区,可明显改变合金的微观组织形态。  相似文献   

7.
非晶态Fe-Ni合金电沉积研究   总被引:5,自引:1,他引:4  
介绍了一种新的电沉积非晶态Fe-Ni合金的方法。用这种方法在室温下电沉积出的Fe-Ni合金镀层外观接近镜面。经X-射线衍射及等离子光谱分析(ICP-AES)证实,所获得的Fe-Ni合金镀层为非晶态结构,镀层中Fe和Ni含量分别为73%~77%和20%~24%,同时含有1.5%~5.0%的P和少量的Cr和B。对电沉积的工艺条件、光亮剂HAB1、HAB2和添加剂HAT的影响进行了探讨。  相似文献   

8.
NiAl(Fe)合金组织和拉伸性能的研究   总被引:1,自引:0,他引:1  
采用光学显微镜、扫描电镜(SEM)、透射电镜(TEM)、电子探针(EPMA)、X射线(XRD)和选区电子衍射分析(SAED)研究了NiAl(Fe)合金的显微组织及拉伸性能。结果表明,铸态NiAl(Fe)合金经均匀化退火后的组织由β及β+γ'相组成。韧性相γ'相能阻止裂纹扩展,有利于改善合金的室温塑性。比较发现,Ni50Al20Fe30合金具有最佳的室温塑性,其拉伸断口由β相的解理断口和β+γ'相的  相似文献   

9.
用Mossbauer谱学和XRD方法研究了快速凝固Al-5Fe-2Ni(原子百分数)合金的析出相,结果表明,析出相为三元化合物Al9FexNi2-x(0〈x〈2)属于单斜晶系,晶格参数a=0.858nm,b=0.631nm,c=0.621nm,β=94.8,它的Mossbauer谱为一套双线,同质异能移位IS=0.12mm.s^-1,四极分别QS=0.32mm.s^-1,线宽Г=0.26mm.s^  相似文献   

10.
将Fe-M(M=C5SiO2Al2O3)混合物在Ar中高能球磨56g后测量Mosbauer谱,结果表明,(Fe)2-(SiO2)1仍为Fe和SiO2的机械混合物:(Fe)6-(C)3已完全合金化,生成两种Fe3C;(Fe)2-(Al2O3)1则成为Fe(73%),尖晶石型的FeAl2O4)22%),qqntFe的团聚族(5%)和Al2O3的混合物。  相似文献   

11.
Mechanical alloying (MA) and rapid solidification (RS) are two important routes to obtain amorphous alloys. An Fe-Ni based metal-metalloid alloy (Fe50Ni30P14Si6) prepared by these two different processing routes was studied by differential scanning calorimetry, scanning electron microscopy with microanalysis, inductive coupled plasma, X-ray diffraction (XRD) and transmission Mössbauer spectroscopy (TMS). The results were compared with that obtained from other Fe-Ni based alloys of similar compositions. The structural analyses show that the materials obtained by mechanical alloying are not completely disordered after 40 h of milling whereas fully amorphous alloys were obtained by rapid solidification. TMS analyses show that, independent of the composition, after milling for 40 h, about 7% of the Fe remains unreacted. Furthermore, the thermal stability of mechanically alloyed samples is lower than that of the analogous material prepared by rapid solidification. In the MA alloys, a broad exothermic process associated to structural relaxation begins at low temperature. XRD patterns of crystallized alloys indicate that the crystallization products are bcc(Fe,Ni), fcc(Ni,Fe), and (Fe,Ni)-phosphides and -silicides.  相似文献   

12.
Abstract

Amorphous alloys, made by rapid solidification, were first introduced in 1960 and precipitated a major new field of research in metallurgy. A part of this new field, dating from around 1975, involves magnetic alloys made by rapid solidification. These new magnetic alloys are critically assessed against the background of existing Si–Fe alloys and the new developments in high induction Si–Fe. It is concluded that these new alloys, of potentially very low cost, may be important in the highly automated manufacture of small transformers and small electricals machines.

MST/726  相似文献   

13.
For Al-(Fe,Cr) and Al-Mg-(Fe,Cr), by employing a combination of X-ray diffraction, metallography and transmission electron microscopy, detailed understanding of microstructural transformations that occur during rapid solidification and consolidation has been achieved. A major decrease in the solid solubility extension of Fe in an Al-Mg system with an increase of Mg concentration has been found. The decrease in solubility of Fe results in the reduction of strength and hardness of the Al-Mg-Fe alloys in comparison with Al-Mg-Cr alloys.  相似文献   

14.
机械合金化Fe—B非晶合金及纳米合金的形成   总被引:7,自引:0,他引:7  
在适当条件下机械合金化可以形成急冷法难以得到的单一Fe60B40非晶合金,而在其他成分内形成亚稳纳米合金,在众多的球磨条件中,球磨机的转速是控制合金化的重要因素。空气中的氧对小颗粒界面产生了强烈的污染作用,从而抑的原子的相互扩散,难以形成单一的非晶产物,不同球磨条件下的产物含有的非晶相的晶化温度比单一非上合金的晶化温度稍高,并且与球磨条件以及成分的关系不大。  相似文献   

15.
A steel–aluminum solid–liquid bonding plate is prepared using a non–equilibrium rapid solidification method (including four kinds of processes such as roughening the steel plate surface, immersing influx at the steel plate surface, short–time bonding and rapid solidification). The interfacial structure of the bonding plate is investigated by means of electron probe microanalysis and X–ray diffraction. The results show that the interfacial structure of the bondingplate under non–equilibrium rapid solidiication is quite different from that of the bonding plate in conventional steel–aluminum solid–liquid bonding, i.e. the interface of the bonding plate under non-equilibrium rapid solidification ismade up of an aluminum-rich region (in the form of a group of Fe4Al13 teeth that grow from the contact surface to the steel side) at the bulge of steel plate surface and an aluminum–poor region (in the form of Fe–Al solid solution of which the Al content is less than 3.5 wt%) at the concave surface of the steel plate alternately.  相似文献   

16.
A steel–aluminum solid–liquid bonding plate is prepared using a non-equilibrium rapid solidification method (including four kinds of processes such as roughening the steel plate surface, immersing in flux at the steel plate surface, short-time bonding and rapid solidification). The interfacial structure of the bonding plate is investigated by means of electron probe microanalysis and X-ray diffraction. The results show that the interfacial structure of the bonding plate under non-equilibrium rapid solidification is quite different from that of the bonding plate in conventional steel–aluminum solid–liquid bonding, i.e. the interface of the bonding plate under non-equilibrium rapid solidification is made up of an aluminum-rich region (in the form of a group of Fe4Al13 teeth that grow from the contact surface to the steel side) at the bulge of steel plate surface and an aluminum-poor region (in the form of Fe–Al solid solution of which the Al content is less than 3.5 wt%) at the concave surface of the steel plate alternately.  相似文献   

17.
Ferromagnetic shape memory Fe–29.6 at.% Pd alloy ribbons prepared by the rapid solidification, melt-spinning method, showed a giant magnetostriction of 830 microstrain when an external magnetic field of 7 kOe was applied nearly normal to the ribbon surface at room temperature. This ribbon’s magnetostriction was several times as large as conventional polycrystalline bulk’s one before rapid solidification. The magnetostriction in the rolling direction depended strongly on a direction of applied magnetic field. We considered that this phenomenon is caused by a rearrangement of activated martensite twin variants just below the austenite phase transformation temperature. We investigated their basic material properties, i.e. the dependencies of magnetostriction on temperature as well as on magnetic angular orientation to the surface, magnetic properties, crystal structure, surface texture morphology and shape memory effect of Fe–29.6 at.% Pd ribbon samples by comparing with conventional bulk sample. It can be concluded that the remarkable anisotropy of giant magnetostriction of ribbon sample is caused by the unique uniaxial-oriented fine grain structure formed by the melt-spinning method. In addition, we confirmed the possibility of rapidly solidified Fe–Pt ribbon as a new kind of iron-based ferromagnetic shape memory alloys for magnetostrictive material.  相似文献   

18.
采用脉冲激光对纯 Fe、纯 Ni、20钢和 Ni 基合金进行了快速熔凝处理。结果表明,在纯 Fe和纯 Ni 熔凝区内,生成了一种外延生长的晶粒组织;在20钢和 Ni 基合金熔凝区内,生成了外延生长晶粒和极细的枝晶组织。在金属与合金的熔区中均形成了精细的的亚晶粒。激光快速熔凝大大地细化了校晶和亚晶,却没有得到明显细化的晶粒。  相似文献   

19.
Ferromagnetic shape memory Fe–29.6 at.% Pd alloy ribbons prepared by the rapid solidification, melt-spinning method, showed a giant magnetostriction of 830 microstrain when an external magnetic field of 7 kOe was applied nearly normal to the ribbon surface at room temperature. This ribbon's magnetostriction was several times as large as conventional polycrystalline bulk's one before rapid solidification. The magnetostriction in the rolling direction depended strongly on a direction of applied magnetic field. We considered that this phenomenon is caused by a rearrangement of activated martensite twin variants just below the austenite phase transformation temperature. We investigated their basic material properties, i.e. the dependencies of magnetostriction on temperature as well as on magnetic angular orientation to the surface, magnetic properties, crystal structure, surface texture morphology and shape memory effect of Fe–29.6 at.% Pd ribbon samples by comparing with conventional bulk sample. It can be concluded that the remarkable anisotropy of giant magnetostriction of ribbon sample is caused by the unique uniaxial-oriented fine grain structure formed by the melt-spinning method. In addition, we confirmed the possibility of rapidly solidified Fe–Pt ribbon as a new kind of iron-based ferromagnetic shape memory alloys for magnetostrictive material.  相似文献   

20.
New materials produced by mechanical alloying   总被引:2,自引:1,他引:1  
The application of mechanical alloying (MA) to alloys based on Fe, Cu, Al, Ti, Co, Ni, Mg, and Nb is reviewed. Enhancement in physical and mechanical behavior, beyond ingot metallurgy and rapid solidification levels, can be achieved by MA, and should lead to commercialization of a number of MA alloys.Conducted under the joint Moscow-Moscow program on Synthesis of Advanced Materials (SAM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号