首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能的影响进行了实验性探究。结果显示热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能具有显著影响。挤压态合金主要由非均匀分布的Mg2Sn相组成。经过495℃,10h固溶处理之后,大部分Mg2Sn相溶入到基体中。时效处理能大幅改善Mg-9Sn-1.5Y-0.4Zr合金的力学性能,最佳时效工艺为:在250℃条件下时效60h。实验最终力学性能参数为:维氏硬度89HV,极限抗拉强度262MPa,屈服强度218MPa,延伸率10.4%。基于实验结果分析,可以发现对于经时效处理的挤压态Mg-9Sn-1.5Y-0.4Zr合金,沉淀强化是主要的强化因素(~51.76%)。  相似文献   

2.
采用金相分析、SEM、硬度试验和拉伸试验等方法分析和测试砂型铸造 Mg-10Gd-3Y-0.5Zr 镁合金在T6态(固溶后空冷然后时效)下的显微组织和室温力学性能,讨论该合金的断裂机理。结果表明,砂铸Mg-10Gd-3Y-0.5Zr合金在225℃和250℃时效下的最优T6热处理工艺分别为(525℃,12 h+225℃,14 h)和(525℃,12 h+250℃,12 h)。峰时效下T6态Mg-10Gd-3Y-0.5Zr合金主要由α-Mg+γ+β′相组成,2种峰时效热处理工艺下合金的抗拉强度、屈服强度和伸长率分别为339.9 MPa、251.6 MPa、1.5%及359.6 MPa、247.3 MPa、2.7%。在不同热处理工艺下Mg-10Gd-3Y-0.5Zr合金断裂的类型不同,峰时效态合金的断裂方式为穿晶准解理断裂。  相似文献   

3.
设计了新型Mg-6Gd-3Y-2Zn-0.5Zr镁合金,并用光学显微镜、扫描电镜及拉伸试验机对合金铸态、均匀化态及挤压态的显微组织特征和力学性能进行了研究。结果表明,铸态Mg-6Gd-3Y-2Zn-0.5Zr合金组织主要由α-Mg基体和沿晶界分布的块状长周期堆垛有序结构相组成,均匀化处理(450℃×16h)促使细小层片状的长周期堆垛有序结构相由晶界向晶内生长。挤压态Mg-6Gd-3Y-2Zn-0.5Zr合金在200℃下时效处理,无明显时效硬化现象,但挤压态合金具有优良的强韧性能,室温抗拉强度、屈服强度和伸长率分别为335MPa、276MPa和17%。  相似文献   

4.
本文通过显微组织分析和力学性能测试等试验手段,研究了热处理对Mg-4Y-3Nd-1.5Al合金显微组织和力学性能的影响。结果表明:铸态合金组织中第二相主要为Mg5RE、Mg24RE5和Al2RE相,经固溶处理后(525℃×6h+550℃×12h),Mg5RE、Mg24RE5相完全溶解,Al2RE不发生溶解。Mg-4Y-3Nd-1.5Al合金具有明显的时效硬化行为,经固溶+时效处理后,合金的力学性能显著提高。经固溶(525℃×6h+550℃×12h)+峰时效(225℃×10h)处理后,Mg-4Y-3Nd-1.5Al合金屈服强度、抗拉强度和延伸率分别为:185MPa、262MPa和6.5%。获得良好的力学性能与合金中析出高密度的细小β""和β"相有关。  相似文献   

5.
采用光学显微镜、扫描电镜、透射电镜、X射线衍射仪、维氏硬度测试仪和万能力学试验机等研究了固溶和时效热处理对铸造Mg-5Y-2Nd-3Sm-0.5Zr合金组织与力学性能的影响。结果表明:铸态合金组织主要由α-Mg基体,Mg24Y5、Mg41Nd5和Mg41Sm5相组成;经固溶处理,铸态合金中粗大的第二相固溶于α-Mg基体中,时效处理后有新的纳米级第二相析出;铸造Mg-5Y-2Nd-3Sm-0.5Zr合金的最佳热处理工艺为525℃下保温10 h,然后225℃下时效处理12 h,热处理后合金具有最优良的力学性能,硬度、抗拉强度、屈服强度和伸长率分别为124.8 HV,296.9 MPa,255.4 MPa和5.78%。  相似文献   

6.
采用金相分析、SEM、硬度试验和拉伸试验等方法分析和测试砂型铸造Mg-10Gd-3Y-0.5Zr镁合金在T6态(固溶后空冷然后时效)下的显微组织和室温力学性能,讨论该合金的断裂机理。结果表明,砂铸Mg-10Gd-3Y-0.5Zr合金在225°C和250°C时效下的最优T6热处理工艺分别为(525°C,12 h+225°C,14 h)和(525°C,12 h+250°C,12 h)。峰时效下T6态Mg-10Gd-3Y-0.5Zr合金主要由α-Mg+γ+β′相组成,2种峰时效热处理工艺下合金的抗拉强度、屈服强度和伸长率分别为339.9 MPa、251.6 MPa、1.5%及359.6 MPa、247.3 MPa、2.7%。在不同热处理工艺下Mg–10Gd–3Y–0.5Zr合金断裂的类型不同,峰时效态合金的断裂方式为穿晶准解理断裂。  相似文献   

7.
研究热处理工艺对铸态Mg-4.2Zn-1.5RE-0.7Zr镁合金显微组织和力学性能的影响。结果表明:铸态Mg-4.2Zn-1.5RE-0.7Zr镁合金的显微组织主要由α-Mg、T相和Mg51Zn20相组成;单级等温时效(325°C,10 h)以及双级时效(325°C,4 h)+(175°C,14 h)处理均未能使T相和Mg51Zn20相溶入基体,且晶粒也未明显长大。在325°C下时效10 h,晶内析出大量短杆状β′1相,延长时效时间将导致β′1相粗化及数量减少。Mg-4.2Zn-1.5RE-0.7Zr镁合金在325°C下时效10 h后具有最高的屈服强度(153.9 MPa)和抗拉强度(247.0 MPa),相比铸态合金分别增加48 MPa和23 MPa,伸长率降低至15.6%。Mg-4.2Zn-1.5RE-0.7Zr合金经双级时效(325°C,4 h)+(175°C,14 h)处理后的屈服强度和抗拉强度与单级等温时效处理(325°C,10 h)的相当,但伸长率有所下降。此外,不同状态下Mg-Zn-RE-Zr镁合金的断裂主要表现为准解理断裂,但局部特征有差别。  相似文献   

8.
本文以相图热力学计算为基础,计算了Mg-9Gd-3Y-0.6Zn-0.5Zr新型合金的垂直截面图,并结合扎克哈罗夫经验公式和合金的DSC曲线分析设计了该合金的热处理工艺,并用CMT5105A型电子万能试验机和显微硬度仪测试了该合金的力学性能。结果表明:在计算所得的Mg-9Gd-3Y-0.6Zn-0.5Zr相图指导下制定的热处理工艺是正确的;挤压态Mg-9Gd-3Y-0.6Zn-0.5Zr合金的最佳热处理工艺为:200℃时效63 h,抗拉强度σb为=430 MPa,比挤压态提高了30.9%。  相似文献   

9.
热处理对Mg-3Sn-1Mn镁合金组织和性能的影响   总被引:3,自引:0,他引:3  
通过光学和电子显微镜、XRD分析以及抗拉和蠕变测试,研究热处理对Mg-3Sn-1Mn镁合金组织和性能的影响。结果表明,热处理对Mg-3Sn-1Mn镁合金的组织和性能有明显影响。当在420℃固溶处理后,合金中的大多数Mg2Sn相溶入基体。但在250℃时效处理后,在时效合金的晶界和晶内析出大量细小的Mg2Sn相,从而时效合金的抗拉性能和蠕变性能被明显改善,其强化机理可能与α-Mg基体中Mg2Sn相的弥散析出有关。  相似文献   

10.
通过显微组织分析和力学性能测试等试验手段,研究了热处理对Mg-4Y-3Nd-1.5Al合金显微组织和力学性能的影响。结果表明:铸态合金组织中第二相主要为Mg_5RE、Mg_(24)RE_5和Al_2RE相,经固溶处理后(525℃/6 h+550℃/12 h),Mg_5RE、Mg_(24)RE_5相完全溶解,Al_2RE不发生溶解。Mg-4Y-3Nd-1.5Al合金具有明显的时效硬化行为,经固溶+时效处理后,合金的力学性能显著提高。经固溶(525℃/6 h+550℃/12 h)+峰时效(225℃/10 h)处理后,Mg-4Y-3Nd-1.5Al合金屈服强度、抗拉强度和延伸率分别为182 MPa、267 MPa和6.5%。获得良好的力学性能与合金中析出高密度的细小β'和β'相有关。  相似文献   

11.
研究热处理工艺对砂型铸造Mg-4Y-2Nd-1Gd-0.4Zr镁合金显微组织和力学性能的影响,分析不同热处理条件下合金的断裂机制,获得最佳热处理工艺。结果表明:Mg–4Y–2Nd–1Gd–0.4Zr合金的最佳T4和T6热处理工艺分别为525°C,8 h和(525°C,8 h)+(225°C,16 h)。在最佳T6热处理条件下,Mg-4Y-2Nd-1Gd-0.4Zr合金的硬度、屈服强度、抗拉强度和伸长率分别为HV91、180 MPa、297 MPa和7.4%。此外,不同状态的Mg-4Y-2Nd-1Gd-0.4Zr镁合金也显示出不同的拉伸断裂方式。  相似文献   

12.
通过金属模铸、热挤压和时效处理(T5)工艺过程制备出高强Mg-7Gd-4Y-1.6Zn-0.5Zr合金,并利用光学显微镜、XRD、SEM及TEM分析研究Mg合金不同状态下的显微组织和力学性能。结果表明:Mg-7Gd-4Y-1.6Zn-0.5Zr合金的铸态组织主要由α-Mg基体和沿晶界分布的片层状第二相Mg12Zn(Gd,Y)组成,经过热挤压变形后,合金晶粒显著细化,时效处理过程中Mg12Zn(Gd,Y)相上析出少量细小的颗粒状Mg3Zn3(Gd,Y)2相。时效态合金的抗拉强度、屈服强度和伸长率分别达到446 MPa、399 MPa和6.1%,其强化方式主要为细晶强化和第二相强化。  相似文献   

13.
为提高生物镁合金的力学和腐蚀性能,对挤压态Mg-3Gd-1Nd-0.3Sr-0.2Zn-0.4Zr镁合金进行不同温度的时效处理,研究时效温度对合金显微组织、室温力学性能和在模拟体液中腐蚀性能的影响。结果表明:合金的析出相呈针状且富含Zr元素。时效处理后合金的显微硬度和屈服强度均比挤压态的高,且随时效温度的升高先升高后降低,当时效温度为185℃时,合金的显微硬度和屈服强度最高。腐蚀速率随着时效温度的升高先降低后升高,时效温度为230℃时,其质量损失腐蚀速率为挤压态的52%±7%。  相似文献   

14.
利用光学显微镜、X射线衍射仪、扫描电镜、电子背散射衍射、透射电镜、硬度以及力学性能测试等对挤压态和T5处理态的Mg-6Zn-1Mn-4Sn-1.5Nd镁合金的显微组织和力学性能进行研究。研究结果表明:合金铸态的相组成为α(Mg)、Mn、Mg7Zn3、Mg2Sn和MgS nN d相。挤压过程中完成动态再结晶,再结晶晶粒的平均尺寸为7.2μm。T5热处理显著提高挤压态合金的强度。合金的屈服强度和抗拉强度分别增加94 MPa和34 MPa。显微组织分析表明,合金强度的提高主要是由于时效过程中析出高密度的β′1杆状相。  相似文献   

15.
通过X射线衍射、光学显微镜、扫描电镜、极化曲线、阻抗谱等对铸态、时效态Mg-10Gd-3Y-0.5Zr镁合金的显微组织、力学性能及耐蚀性能进行了研究。结果表明:铸态Mg-10Gd-3Y-0.5Zr合金由α-Mg、树枝状相Mg_(24)(Gd,Y)_5及颗粒状相Mg_5(Gd,Y)组成,合金经515℃×8 h固溶+225℃×36 h时效处理后,树枝状Mg_(24)(Gd,Y)_5转变为大量薄片状及细长条状的Mg_5(Gd,Y)相。室温力学性能测试结果表明,经时效处理后的合金显微硬度增加27.8%,达到101.97 HV0.1,抗拉强度增加52.5%,达到305 MPa,规定塑性延伸强度增加121.3%,达到239 MPa。极化曲线及阻抗谱表明,时效处理后合金的腐蚀电流密度减小,容抗弧半径增大,电荷传递电阻增大,合金耐腐蚀性能增强。  相似文献   

16.
瞿祥落  韩宝  赵文博  许春香 《铸造》2014,(3):275-279
采用OM、SEM、XRD和电子材料试验机研究了热处理对Mg-7Sn-4Al-2Zn-xSr(x=0,2,3,4)合金组织和力学性能的影响。结果表明,铸态和热处理后的Mg-7Sn-4Al-2Zn合金主要由α-Mg、Mg2Sn和β-Mg17Al12相组成,加入适量的Sr后,合金中形成新的Srx Mgy Snz相,组织得到了细化;合金经T6(固溶430℃保温12 h+时效250℃保温8 h)处理后,Mg2Sn和Srx Mgy Snz相更均匀的析出,弥散分布在晶界和基体中。当Sr含量为3 wt.%时,铸态和热处理态合金都表现出最佳的常温力学性能,铸态合金的抗拉强度和伸长率分别为197 MPa和5.6%,热处理后合金的抗拉强度和伸长率分别为207 MPa和8.6%,合金力学性能的提高主要是归因于晶粒细化和第二相弥散强化。  相似文献   

17.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪和万能力学试验机等研究了固溶和时效处理对Mg-8Gd-3Y-1.5Zn-0.6Zr合金显微组织和力学性能的影响。结果表明,Mg-8Gd-3Y-1.5Zn-0.6Zr合金铸态、固溶态和时效态的显微组织均由α-Mg基体、Mg5(Gd, Y, Zn)相和LPSO结构组成;合金经固溶和时效处理后的最大抗拉强度由铸态的187.96 MPa提高到241.93 MPa,提高了28.71%,伸长率由铸态的8.48%提高到13.91%,提高了64.03%;不同热处理状态下合金的拉伸断口形貌主要以脆性断裂为主。  相似文献   

18.
为了确定挤压态Mg-5Sn-2Si-2Sr合金合适的热处理方案,分别采用硬度计、X射线衍射仪、力学性能试验机、光学显微镜,研究了该合金经T4(固溶处理)、T5(200℃×12 h时效)和T6(固溶+时效)热处理后显微组织及力学性能的变化。结果表明:挤压态Mg-5Sn-2Si-2Sr合金宜采用T5热处理工艺。经T5热处理后,在晶界处析出大量Mg2Si强化相,使合金的屈服强度、抗拉强度分别达210.9 MPa、257.0 MPa,高于挤压态、T4和T6热处理工艺下的合金强度。T4热处理时,固溶强化作用远小于退火软化作用,致使合金力学性能的下降。T6热处理时,析出相及晶粒尺寸的长大使得合金力学性能的提高受到了限制。  相似文献   

19.
采用光学显微镜(OM)、X射线衍射仪(XRD)、带有电子能谱仪(EDS)的扫描电子显微镜(SEM)和电子拉力试验机等,研究了Mg-6Gd-3Y-0.5Zr合金经固溶和时效工艺处理后的显微组织和力学性能。结果表明,铸态Mg-6Gd-3Y-0.5Zr合金主要由α-Mg基体、Mg5Gd相和Mg24Y5相构成;在510℃固溶处理6 h,合金中的稀土析出相基本消失,晶粒粗化还未开始,所得合金硬度值较高;在225℃时效处理12 h,合金的硬度值达到最大值,且时效温度不高,时效时间较短。  相似文献   

20.
通过对Mg-8.8Gd-3.5Y-1.5Nd-0.5Zr合金进行热变形及时效热处理,研究了时效对该塑性变形镁合金的显微组织及力学性能的影响。结果表明,经热变形后的Mg-8.8Gd-3.5Y-1.5Nd-0.5Zr合金,晶粒细化效果明显。变形后进行时效处理,合金硬度显著增加,由变形态硬度53.68 HRB上升到64~71 HRB,上升了10%~31%;时效温度由200℃上升到250℃,峰值硬度随之降低,合金达到峰值硬度的时间缩短。最佳时效工艺为200℃×16 h,此时组织细密,弥散度及性能最好,合金获得最高的峰值硬度(70.57 HRB)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号