首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过TC4-DT钛合金在1181~1341 K,0.01~10 s~(-1)条件下热模拟压缩试验,得到其在不同条件下高温变形真应力-真应变曲线。采用回归分析和多项式拟合建立了应变补偿高温变形本构方程。结果表明:各变形条件下的流变应力曲线均呈现应变硬化和流动软化,低温高应变速率特征更明显。当应变速率低于1 s~(-1)时,预测值与实验值吻合程度较高,相关系数和平均相对误差绝对值分别为0.9952和5.78%,此修正模型可作为TC4-DT钛合金高温变形本构方程。  相似文献   

2.
采用Gleeble-1500D热/力模拟实验机,在变形温度为800~1050℃,应变速率为0.01~5 s~(-1)的条件下,对TA10钛合金做热压缩实验,并根据动态材料模型(DMM)建立不同应变下TA10钛合金的热加工图,分析应变对耗散效率因子、失稳参数和热加工图的影响。结果表明:随着应变的增加,峰值耗散效率因子和流变失稳区均呈现出规律性的变化,都出现了先减小后增大的现象,流变失稳区由小应变时的一个失稳区逐渐变为大应变时的两个失稳区;适用于TA10钛合金的热加工工艺参数范围是变形温度为950~1050℃、应变速率为0.01~0.8 s~(-1)。  相似文献   

3.
《塑性工程学报》2016,(2):120-125
利用Gleeble-3800热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度1163K~1293K、应变速率为0.005s~(-1)~0.5s~(-1)、变形量为60%条件下的热变形行为。根据应力-应变曲线分析该合金的流变应力变化特点,建立该合金的Arrhenius双曲正弦型本构方程。结果表明,所建立的本构方程与实验值吻合程度较高,为制定TC4-DT钛合金热加工工艺规范提供理论依据。  相似文献   

4.
采用Gleeble 3500D热模拟试验机对TC17钛合金进行了高温压缩试验。其变形温度为973~1223 K,应变速率为0.001~10 s~(-1),应变0.9。结果表明:TC17钛合金高温流变应力对应变速率和变形温度非常敏感。在温度为1123,1183和1223 K,应变速率为10 s~(-1)时,TC17钛合金的流动应力出现了明显的应力不连续屈服现象。利用Zener-Holloman参数建立了TC17钛合金的高温本构方程,与试验结果对比表明:该方程可以准确地描述TC17钛合金的的高温流动行为。基于动态模型,建立了TC17钛合金的热加工图,并结合微观组织分析验证了加工图的准确性。  相似文献   

5.
通过在G1eeble-3800模拟机上热压缩试验研究了TB9钛合金在变形温度850~1050℃、应变速率0.01~10s~(-1)、变形程度70%的条件下的热变形行为。基于试验数据及Prasad判据建立了真应力-真应变曲线和加工图,通过其研究了该合金的高温变形行为、变形失稳现象和变形机制。结果表明:TB9钛合金的流变应力与变形速率成正比,与变形温度成反比:在试验条件下合金发生不连续屈服现象;功率耗散率较高的区域发生了不连续动态再结晶;流动失稳区为:850~1050℃和0.5~10s~(-1),850~950℃和0.08~0.5s~(-1),失稳现象表现为不均匀变形;适合加工的区域是1000~1050℃和0.01~0.1 s~(-1)围成的区域。  相似文献   

6.
通过恒应变压缩实验研究了锻态TC10钛合金的高温变形行为和组织演变规律,变形温度为800~920℃,应变速率为0.01~10 s~(-1),变形量为60%。研究结果表明:降低变形温度、提高应变速率,流变应力会在变形初期迅速增加,而显微组织没有明显变化,当流变应力达到最大值后随着动态再结晶的发生而逐渐降低。提高变形温度、降低应变速率,能够为动态再结晶提供能量,细化组织并降低流变应力。综合分析表明:在变形温度为840~900℃,应变速率为0.01~0.1 s~(-1)的参数范围内进行热变形可以获得性能优良的TC10钛合金产品。  相似文献   

7.
利用Gleeble-3800热模拟试验机,在变形温度为820~1060℃及应变速率为0.001~1 s~(-1)参数范围内对Ti-6Al-3Nb-2Zr~(-1)Mo钛合金进行等温恒应变速率压缩试验。建立了该合金的高温变形本构方程,得到两相区和单相区的表面激活能分别为764.714和126.936k J/mol。基于动态材料模型(DMM)和Prasad失稳准则建立了应变为0.4和0.7时的热加工图。分析加工图发现:Ti-6Al-3Nb-2Zr~(-1)Mo钛合金在840~1060℃,应变速率为0.001~0.1 s~(-1)之间主要发生动态再结晶(DRX)/球化,此区间变形时耗散率峰值51%分别出现在940℃/0.001 s~(-1)和880℃/1 s~(-1),其变形后微观组织演变机制与热加工图匹配较好,当变形发生在820℃,较高应变速率(≥1 s~(-1))下该合金加工时易发生流变失稳现象。  相似文献   

8.
为了分析TA7钛合金的热变形工艺参数,通过高温压缩试验对TA7钛合金的高温变形行为进行了研究。试验温度为1123~1273K,应变速率为0.001~1 s~(-1)。此外,提出了一种修正并联本构模型用来分析应变速率、变形温度及应变对流动应力的影响。然后,基于动态模型,建立了TA7钛合金的热加工图,并通过微观组织分析对加工图的准确性进行了验证。结果表明,TA7钛合金合理的工艺参数为变形温度1223 K,应变速率0.001 s~(-1),而其非稳态区域位于低温高应变速率区。  相似文献   

9.
采用等温热压缩试验研究不同变形条件下(变形温度300~450°C、应变速率0.01~10 s~(-1))喷射成形Al-9.0Mg-0.5Mn-0.1Ti合金挤压坯的流变应力行为,并基于动态材料模型建立2D加工图和3D功率耗散图来分析合金的流变失稳区和优化合金的热变形工艺参数。结果表明,当应变为0.4时,合金在300°C、1 s~(-1)条件下压缩变形,能量耗散效率因子η值最小,主要软化机制为动态回复,晶粒呈扁平状,大角度晶界(15°)约占34%;合金在400°C、0.1 s~(-1)条件下压缩变形,能量耗散效率因子η值最大,合金的主要软化机制为动态再结晶,组织为完全再结晶组织,大角度晶界(15°)约占86.5%。2D加工图和3D功率耗散图表明喷射成形Al-9.0Mg-0.5Mn-0.1Ti合金挤压坯的最佳变形条件是:变形温度340~450°C、应变速率0.01~0.1 s~(-1),合金的能量耗散系数38%~43%。  相似文献   

10.
在DIL805A/T热模拟机上对TC4进行了等温压缩试验,研究了该合金在变形量为55%温度为870、920、970、1020℃、应变速率为0.001~1 s~(-1)的条件下的高温变形行为。使用双曲正弦形式修正的Arrhenius关系来描述TC4钛合金高温压缩变形时最大变形抗力的本构方程。绘制出TC4钛合金的加工图,通过使用金相显微镜观察微观组织验证加工图的有效性。结果表明,应力-应变图可以很好地反映TC4钛合金在不同变形条件下的应力状态,且应力值和试验值有较好相关性(R~2=0.9006),通过观察微观组织得出在920℃、0.01 s~(-1)的应变条件下试样组织为典型的(α+β)组织,组织稳定,韧性好,高温强度高,材料加工综合性能最好。结合热加工与组织分析,TC4钛合金的最佳工艺参数是在900~950℃,0.01~0.1 s~(-1)的应变条件下。  相似文献   

11.
采用分步超塑成形法研究了未经特殊细化的TC4-DT钛合金的超塑性。结果表明,在温度为860~950℃,应变速率为3.3×10~(-4)~1.0×10~(-2) s~(-1),预应变量为20%~80%,间隙保温时间为5~30min条件下,TC4-DT合金均表现出良好的超塑性(305.93%~506.67%)。变形温度为890℃,预应变量为50%,间隙保温时间为10min,第1步和第2步应变速率均为3.3×10-4 s~(-1)时,TC4-DT合金表现出最佳超塑性,伸长率为506.67%。真应力-真应变曲线表明,第2步开始时的应力明显小于第1步结束时的应力,第1步变形对该合金产生一定的软化作用。TC4-DT显微组织显示,动态再结晶一直伴随着整个分步超塑性变形过程,静态再结晶发生在间隙保温时间。再结晶行为的发生,为塑性变形提供了细小等轴组织,有利于该合金超塑性的提高。  相似文献   

12.
采用Gleeble-3800热力模拟试验机在温度为1123~1423 K、应变速率为0.001~10 s~(-1)的条件下对2101双相不锈钢进行了热压缩实验,以研究热变形参数对其热加工行为的影响规律。结果表明,相同应变速率下,随温度升高,流变曲线由动态再结晶向动态回复转变。变形速率由0.001 s~(-1)增至0.01和0.1 s~(-1)提高了动态再结晶温度范围,而1和10 s~(-1)的较高应变速率不利于动态再结晶。在应变速率为0.001~0.1s~(-1)、变形温度为1253~1323 K时,峰值应力所对应的应变越小,奥氏体动态再结晶越容易发生,有利于等轴状再结晶组织形成。低应变速率下,变形温度升高使奥氏体再结晶晶粒长大,且Zener-Hollomon参数较大时,动态再结晶效果变差与Mn稳定奥氏体能力较Ni弱有关。基于热变形方程计算得到该不锈钢热变形激活能Q=464.49 k J/mol,略高于2205双相不锈钢,并建立了峰值流变应力本构方程。结合不同变形条件下的应变曲线和显微组织,根据热加工图确定了最佳热加工区域为应变速率在0.001~0.1 s~(-1)、变形温度为1220~1350 K,该区域功率耗散系数处于0.40~0.47的较高值,发生了明显奥氏体动态再结晶。  相似文献   

13.
杨新存 《铸造技术》2014,(5):896-898
研究了TC4-DT钛合金的热变形行为,并通过计算机绘制了该合金的加工图。结果表明,随着应变速率的增加和变形温度的减小,TC4-DT钛合金流变应力变大。其加工失稳区主要集中在应变速率较大的区域内。  相似文献   

14.
获得准确的钛合金塑性变形特征和热加工条件,是钛合金挤压、轧制等塑性加工工艺参数选择的重要依据。本实验研究了TA15钛合金在应变速率0.01~20 s~(-1)、变形温度850~1050℃条件下的压缩变形行为、组织特征,采用Arrhenius双曲正弦函数模型推导出了TA15本构方程,基于动态材料模型建立了合金在真应变0.1~0.7时的热加工图。结果表明,在本实验的应变速率和变形温度的条件下进行压缩变形,随着变形温度的升高,合金中的α相逐渐向β相转变;随着应变速率的提高,α相向β相转变的程度逐渐减小。根据热加工图确定了合金的两个热加工安全区域:(1)变形温度950~1050℃、应变速率0.01~0.37 s~(-1);(2)变形温度875~950℃、应变速率1.65~13.5 s~(-1)。  相似文献   

15.
利用Gleeble-3500热模拟试验机测定了6022铝合金的应力应变行为,基于动态材料模型,构建了热加工图。观察了不同变形条件下的金相组织。实验结果表明:当形变量为60%时,6022铝合金热加工图中存在局部较高的功率耗散区(加工温度为440~550℃、应变速率为0.01~1 s~(-1)时),达30%以上,为实验材料的最佳热加工区,在该区域热变形后,材料晶粒细小;热加工图中存在3个失稳区,加工温度为300~390℃,应变速率为0.01~0.02 s~(-1);加工温度为300~340℃,应变速率为0.4~10 s~(-1);加工温度为470~500℃,应变速率为0.6~10 s~(-1)。实际热加工过程中应避开此区域,防止材料内部微观缺陷的产生。  相似文献   

16.
使用热模拟试验机Gleeble-3800测得了高温钛合金Ti60在960~1080℃和应变速率0.001~10 s~(-1)条件下的应力应变曲线。为了得到峰值应力、应变速率和变形温度的关系,拟合了Arrhenius型本构方程,获得了合金在该变形条件下的热加工图。结果表明,在变形条件960℃和0.001 s~(-1)下功率耗散因子最大,适宜Ti60合金的加工变形。  相似文献   

17.
利用Gleeble-3500热模拟试验机进行等温恒应变速率热压缩实验,研究了TC4钛合金在温度800~950℃、应变速率0.001~10 s~(-1)条件下的流动软化行为。研究发现随变形温度降低和应变速率增大TC4钛合金的流动软化程度增大,且800~850℃、应变速率1~10 s~(-1)变形时的流动软化主要是塑形流动失稳引起的,温度900~950℃、应变速率0.001~0.1 s~(-1)条件变形时,流动软化主要是片状α相的等轴化引起的。引入应变对材料常数α、n、A和Q的影响,建立了考虑应变的TC4钛合金Arrhenius本构方程,建立的本构模型精度较好,在800,850℃和10 s~(-1)条件以及在900,950℃和0.1 s~(-1)条件下,模型平均绝对误差分别为4.2%和4.3%。TC4钛合金的平均变形激活能为403 kJ/mol,平均应变速率敏感指数为0.26。  相似文献   

18.
在不同变形温度(T=850~1050℃)和不同应变速率(ε觶=0.001~5s~(-1))下采用Gleeble~(-1)500D热模拟试验机对热等静压态TC4钛合金进行了高温热压缩试验,分析了真应力-真应变曲线特征及热变形参数对显微组织的影响,建立适用于热等静压态TC4钛合金高温流动行为的Arrhenius方程及DMM(动态材料模型)加工图。结果表明:峰值应力随应变速率的增大及变形温度的降低而增大;显微组织随变形温度升高发生马氏体相变,随应变速率增大,β相析出次生α'相,且T=900℃、ε觶=0.01s~(-1)时获得(α+β)双态组织,表明该条件能够改善材料加工性能。误差分析表明,峰值应力计算值与试验值平均相对误差绝对值仅6.77%,证明建立的本构方程能够准确预测材料高温变形时的流动应力。加工图分析表明材料流动失稳区为T=850~950℃、ε觶0.6 s~(-1),最佳加工区间为T=850~950℃、ε觶=0.01~0.1s~(-1)。  相似文献   

19.
在温度为900~1060℃和应变速率为0.001~10s~(-1)的条件下,通过热模拟压缩实验研究TC11/Ti-22Al-25Nb双合金电子束焊接件的高温热变形行为。结合实验数据,建立双合金热变形中流变应力随应变速率和变形温度的本构方程。同时对变形过程中的激活能进行计算和分析得出,激活能随着应变的增加而逐渐减小。在应变为0.9时激活能为334kJ/mol。变形过程中耗散率η随着变形参数的变化而变化;当应变速率为0.01、0.1和1s~(-1)时,η随应变的增加而增加;而当应变速率为0.001和10 s~(-1)时,η随应变的增加而减小。通过热加工图分析可知,最大耗散率(η=0.51)出现在1060℃和0.1 s~(-1),在此条件下,可以从焊缝区域组织中观察到明显的动态再结晶现象。而当应变速率降低时,耗散率η急剧下降,在1060℃和0.001s~(-1)的变形条件下,η降低到0.02,变形机制以动态回复为主。当失稳系数ξ(ε)为负时,材料高温变形发生失稳。分析可知,应变速率为0.001~0.6s~(-1),变形温度为900~1060℃是双合金热变形的安全区域。  相似文献   

20.
为了研究DB685钢的热变形特性,选取并建立了DB685钢的高温应力应变本构方程,利用Gleeble-1500热模拟机对DB685钢在变形温度为900~1200℃、应变速率为0.01~10 s~(-1)、最大应变量70%条件下进行压缩实验,根据建立的本构方程,绘制DB685钢的热变形加工图,利用所建立的加工图,分析了不同温度和应变速率下合金的热成形性能,结果表明:随着变形温度的升高和应变速率的降低,合金的流变应力下降,动态再结晶更容易发生;DB685钢在1125℃温度以上,并且在对应的应变速率下,耗散系数存在峰值;随着应变的增大,其耗散系数略有增大,失稳区减小,但热加工图的整体趋势保持一定。因此对于工业热加工,建议变形温度为1125~1175℃,应变速率高于0.032 s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号