首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前,国内鲜见关于Q235钢在直流杂散电流和酸性土壤联合作用下腐蚀行为的报道。通过失重法、电化学阻抗谱、显微镜、扫描电镜和X射线衍射法等,研究了直流杂散电流大小对Q235钢在含水率为30%和40%的鹰潭酸性土壤中腐蚀特性的影响。结果表明:土壤含水率和直流杂散电流对Q235钢的腐蚀行为有较强影响,其表面呈现局部腐蚀,电化学阻抗(EIS)谱为偏心的半圆;土壤的含水率相同时,EIS谱的容抗弧随着直流杂散电流的增加而减小,腐蚀速率和最大点蚀深度随着直流杂散电流的增加而增大;Q235钢在含水率为30%的土壤中的腐蚀快于在含水率为40%的土壤中的。  相似文献   

2.
杂散电流干扰对油气管道造成很大的危害和破坏,如何有效地检测评价并制定合适的防护对策是油气管道杂散电流防护的关键。基于杂散电流不同检测方法和排流应用实践,开展了输油管道杂散电流综合检测评价及防护研究。结果表明:采取全线检测与专项检测相结合方式,综合运用CIPS(密间隔管地电位测试)、SCM(杂散电流智能测试仪)、电位梯度、电位和电流监测等多种检测评价方法,结合现场开挖分析,可准确确定管道杂散电流干扰类型及对管道的影响;检测的输油管道受到较严重的直流杂散电流干扰及一定的交流杂散电流干扰而发生局部腐蚀;通过管地电位测量对杂散电流排流整治措施进行了效果分析与评定,建议了管道杂散电流干扰防护对策。提出应加强管道杂散电流源头控制,同时综合运用多种检测、监测技术,有效分析各种干扰因素和腐蚀状况,制定科学合理的治理方法和防护对策,为管道完整性管理提供依据。  相似文献   

3.
李琴  陈奔  黄志强  何磊  李刚 《材料保护》2019,52(4):66-72
为得到轨道与埋地管道并行情况下杂散电流对管道电腐蚀的影响规律,建立了基于电路原理和电力系统接地极理论的双边供电直流电车杂散电流对管地电位干扰模型,并求得了轨道电位和管地电位的分布变化函数以及杂散电流泄漏量分布函数。采用MATLAB进行了数值模拟,得到了杂散电流泄露规律及其对管地电位干扰规律,并对管道防腐蚀层单破损点、双破损点情况下管道的电腐蚀规律进行了分析。结果表明:轨道杂散电流泄露量与轨道电位大小成正比,降低轨道电阻可减小杂散电流泄露量。防腐蚀层单破损点不易产生腐蚀,双破损点导致局部腐蚀较严重,且变电站附近的点腐蚀严重。因此,应重点监测保护变电站处下方管道以减少产生多破损点的概率。  相似文献   

4.
交流杂散电流对埋地Q235钢腐蚀行为的影响   总被引:2,自引:0,他引:2  
土壤腐蚀中的交流杂散电流对管线钢腐蚀严重,为了弄清其影响规律,在室内模拟埋地Q235管线钢所处环境及受交流杂散电流腐蚀状况,通过调节交流电压改变交流信号的强度,利用失重试验和电化学技术研究了交流杂散电流强度对Q235钢腐蚀行为的影响。结果表明:Q235钢在土壤中的腐蚀同时存在交流杂散电流腐蚀和电化学腐蚀,其中交流杂散电流腐蚀可加剧电化学腐蚀过程;随着杂散电流强度的增大,腐蚀程度大大增加;在交流杂散电流存在的情况下,随着所施加交流电压的增大,Q235钢腐蚀电位负移,腐蚀电流密度增大,塔菲尔斜率r(βa/βc)相应减小,易发生阳极反应;随着埋地时间的增加,Q235钢在土壤中的腐蚀速率先增大后减小,逐渐趋于稳定。  相似文献   

5.
采用瞬间断电法,得到管/地通电、断电电位曲线,初步判断某管道存在直流杂散电流干扰腐蚀。结合现场调研,确定直流干扰源为地铁2号线。对现场进行开挖验证,进一步断定管道存在地铁直流干扰腐蚀,同时分析了地铁直流干扰的腐蚀原理。  相似文献   

6.
本文通过实验对埋地钢质管道直流杂散电流腐蚀机理及影响因素进行研究,认为:(1)直流杂散电流腐蚀机理为阳极区金属失去电子由铁变为铁离子,阴极区发生电解水化学反应;(2)直流杂散电流腐蚀速率与电流强度呈线性相关;(3)杂散电流强度相同,腐蚀速率随土壤电阻率增大而下降;(4)直流杂散电流电压相同,腐蚀速率随土壤电阻率减小而增大。  相似文献   

7.
随着武汉轨道交通的迅猛发展,轨道交通泄漏到大地的杂散电流日益增多,但目前缺乏对武汉轨道交通,特别是有轨电车动态杂散电流干扰下腐蚀速率的系统研究.对武汉轨道交通动态直流干扰下的管地电位进行了24 h连续监测,对其干扰进行风险评估并得到了6处腐蚀风险较高点进行腐蚀速率测试.结果 显示:土壤自然腐蚀速率为0.022~0.063 mm/a,杂散电流干扰造成的腐蚀速率为0~0.38 mm/a,阴极保护效果良好的情况下管道腐蚀风险较低,存在杂散电流干扰的情况下燃气管道的腐蚀速率是土壤自然腐蚀下的几倍乃至十几倍,干扰最高的有轨电车测试点测得的腐蚀速率最高为0.38 mm/a.  相似文献   

8.
为了研究消毒液对高铁车厢铝合金腐蚀的影响,采用动电位极化和电化学阻抗2种电化学测量技术,研究了高铁车体A7N01S-T5铝合金在不同浓度(100,200,400,800,1 000 mg/L) 84消毒液中的电化学行为,取自来水作为对照试验,使用VHX-2000C超景深三维体式显微镜观察试验后铝合金电极的微观形貌。结果表明:电化学阻抗谱中的Nyquist谱电极过程受活化和扩散控制,随着消毒液浓度升高电荷转移电阻和低频阻抗值减小并趋于一致;极化曲线的阴极过程和阳极过程分别以析氢反应和氧化还原反应为主,随着消毒液浓度升高,自腐蚀电位在不断负移后趋于一致,点蚀电位不断负移,腐蚀电流密度逐渐增大后趋于一致;随着消毒液浓度升高合金表面腐蚀由点蚀发展为全面腐蚀,腐蚀区域扩展缓慢,腐蚀速度减缓。  相似文献   

9.
王军  吴昀  张响  杜艳霞  朱敏  李自力 《材料保护》2023,(4):169-177+182
直流杂散电流对埋地金属管道产生很大干扰。从直流杂散电流类型(稳态直流和动态直流)以及干扰电流大小的角度分析了直流杂散电流对金属材料的腐蚀规律,包括电化学行为和腐蚀影响。从金属腐蚀和阴极保护干扰2个方面调研了直流杂散电流对埋地管道的干扰影响,并按照干扰源的类型(高压直流接地极、阴极保护阳极地床和地铁)进行了归纳。最后,对直流干扰下埋地管道腐蚀规律研究存在的不足进行了探讨,对未来的研究方向进行了展望。  相似文献   

10.
我国埋地钢制油气管道面临着越来越多的直流杂散电流干扰,为了减少或消除该干扰带来的安全隐患,对直流杂散电流的分析及防护方法进行了探讨。从直流高压输电系统、直流牵引系统和其他直流系统3个方面介绍了直流杂散电流的来源及检测方法,分析了不同来源直流杂散电流对埋地管道的腐蚀干扰规律及其危害,进而对不同杂散电流防护方法的优缺点进行了总结,并列出了其适用范围。最后,对杂散电流腐蚀及防护的研究方向进行了展望。  相似文献   

11.
通过电化学技术研究了外加直流电流与牺牲阳极阴极保护联合使用时,外加直流对牺牲阳极保护效果的影响.结果发现,牺牲阳极的输出电流随着外加直流电流的增大而减小,同时牺牲阳极的工作电位负移.必须通过实测牺牲阳极的输出电流来判断其效果.牺牲阳极应尽可能远离辅助阳极,处于外加直流难以到达的区域,同时还要注意调整外加直流的大小,以充分发挥二者的保护效果.  相似文献   

12.
针对某船90/10铜镍合金海水管路系统异常快速腐蚀问题,采用失重法、电化学法、微观形貌分析等方法研究了90/10铜镍合金海水管路系统直流杂散电流腐蚀规律,对比分析了直接排流法和牺牲阳极保护法对直流杂散电流腐蚀控制的效果。结果表明,90/10海水管路直流杂散电流腐蚀速率随着杂散电流强度增加而线性增加,晶界优先发生腐蚀溶解;直接排流法和牺牲阳极保护法均可抑制直流杂散电流腐蚀,但牺牲阳极保护法对强直流杂散电流腐蚀防护效果有限,直接排流法可对90/10铜镍合金海水管路直流杂散电流腐蚀进行有效保护。  相似文献   

13.
以在国内6个城市埋设阴极保护腐蚀检查片开展现场测试为研究手段,结合部分室内腐蚀模拟试验结果,通过试片的阴极保护和干扰参数与腐蚀速率的关联性分析初步建立了交流干扰下埋地管道阴极保护安全边界,结论如下:交流干扰下试片的腐蚀速率随试片面积增大而减小;建立了基于极化电位的交流腐蚀安全边界:控制极化电位位于-0.85~-1.20 V(vs CSE)区间且交流电流密度小于30.0 A/m2或控制极化电位位于-0.95~-1.10 V(vs CSE)区间且交流电流密度小于100.0 A/m2;建立了基于直流电流密度的交流腐蚀安全边界:控制直流电流密度位于0.15~20.00 A/m2区间且交流电流密度小于30.0 A/m2或控制直流电流密度位于0.15~1.08 A/m2区间且交流电流密度小于100.0 A/m2;建立了基于pH值的交流腐蚀安全边界:控制pH值位于10.0~14.0区间且交流电流密度小于30.0 A/m2或控制pH值位于11.3~1...  相似文献   

14.
方晓君  彭伟华 《材料保护》2018,(2):56-60,72
为弄清各因素下,原油输送管道在原油沉积水中的腐蚀机理,通过动电位扫描法和电化学阻抗谱分别研究了X60管线钢在模拟原油沉积水中的电化学行为,研究了Cl~-、HCO_3~-、SO_4~(2-)等的浓度对X60管线钢电化学行为的影响。结果表明:在试验浓度内,Cl~-浓度为25 000 mg/L时腐蚀速率最大,极化电阻最小,随着Cl~-浓度的继续增大,自腐蚀电流有所降低;随着HCO_3~-浓度的增大,自腐蚀电流密度先增大后减小,当HCO_3~-浓度为6 000 mg/L时,自腐蚀电流密度最大;SO_4~(2-)浓度的增大促进了X60管线钢在沉积水中的腐蚀。  相似文献   

15.
郭勇  丁继峰  王港  李向阳 《材料保护》2021,54(7):133-139
地铁成为城市交通运输的主要方式,给人们出行带来便利的同时也造成了埋地管道直流杂散电流干扰,成为管道运行的安全隐患,地铁杂散电流的检测与防护成为研究的重点.对目前地铁对埋地管道杂散电流干扰的检测方法进行了介绍,分析了杂散电流的干扰特征,列举了地铁杂散电流泄露电流的估算方法,研究了埋地管道杂散电流干扰的腐蚀防护措施,探讨了目前国内外对地铁杂散电流干扰的研究现状,并对其下一步的研究重点进行了展望.  相似文献   

16.
为加强对油田电泵井套管的腐蚀控制,通过室内模拟交流杂散电流腐蚀试验,考察了交流杂散电流对电泵井套管的腐蚀性.结果表明:试样腐蚀速率随着电压的增加而增大,随介质电阻率的增大而减小,电泵井套管的腐蚀存在杂散电流腐蚀及土壤电化学腐蚀的双重强腐蚀.该区域土壤具有较强的腐蚀性,虽然杂散电流并不连续,但可加剧土壤电化学腐蚀.确定采用排流保护法并设计了牺牲阳极排流方案来控制腐蚀.现场测试表明,管地电位波动范围由措施前的124.0 mV减少至27.1 mV,管地电位可负移至一850.0mV(相对饱和硫酸铜参比电极),保护率为78.1%,达到了石油行业标准规定的防腐蚀要求.  相似文献   

17.
某埋地钢质管道与地铁线路并行,受地铁杂散电流干扰严重,地铁站内轨地电位(铁轨对接地电位)保护装置频繁合闸.通过同步监测轨地电位和管道通/断电电位数据并进行对比分析,研究了钢轨电位限制装置合闸和未合闸状态下,管道受地铁杂散电流的干扰程度和规律.研究结果显示:轨地电位保护装置合闸后,通过地铁站接地网泄放和吸收杂散电流,管道通/断电电位波动幅度变大,造成管道的受干扰程度上升,欠保护管道长度增加,靠近地铁站接地网的管段和远离的管段互为杂散电流的流入流出点,钢轨电位限制装置合闸后,地铁站接地网成为地铁系统的主要杂散电流泄漏点.所考察案例中干扰的峰值出现在靠近地铁站的管段上,管道上所有点的杂散电流流出的时间小于流入的时间.钢轨电位限制装置未合闸时,大部分时间内管道电位的偏移与轨地电位波动具有相关性,但小部分时间段内管道电位的偏移与轨地电位波动不相关,表明所考察案例中除铁轨流入流出的杂散电流外,还存在其他杂散电流对管道造成的干扰.  相似文献   

18.
为了防止放射性污染,减缓铀的腐蚀,广泛采用在贫铀表面电镀镍.利用线性极化、动电位极化和电化学阻抗谱技术对贫铀表面脉冲电镀镍的电化学腐蚀行为进行了研究.结果表明,在含50μg cl-的KCl溶液中,镍的腐蚀电位高于贫铀,镍镀层对贫铀是一种阴极性镀层;与直流电镀镍相比,铀表面脉冲电镀镍腐蚀电位更高,极化电阻更大,腐蚀电流更小,电化学阻抗幅值更大,对铀基体具有良好的防腐蚀性能;随着浸泡时间的推移,脉冲电镀镍腐蚀电位下降,极化电阻减小,腐蚀电流增大,电化学阻抗幅值降低,电极过程由一个时间常数向两个时间常数转变,腐蚀特性由点蚀向电偶腐蚀转变.  相似文献   

19.
为了深入研究温度对铝合金材料的腐蚀行为和机理,采用盐水腐蚀方法研究了其在高温条件下的电化学特性及腐蚀机理.选用7A04和5A06铝合金作为研究对象,在质量分数为3.5%的氯化钠溶液中,利用增重法、蔡司显微镜并结合电化学测试方法研究了其在20~80 ℃范围内的腐蚀性能,分析了腐蚀产物的微观形貌,探讨了腐蚀机理.结果表明:两种铝合金试样的腐蚀速率均随温度升高而增大.在Tafel极化曲线图中,对于同一种铝合金,自腐蚀电位随腐蚀温度增加向负方向移动,自腐蚀电流密度和年腐蚀深度随腐蚀温度增加而减小.对同一腐蚀温度下的两种铝合金,5A06铝合金自腐蚀电位低于7A04铝合金,腐蚀电流密度和年腐蚀深度均小于7A04铝合金.电化学阻抗图谱中,两种铝合金在不同条件下的Nyquist图均存在一个容抗弧,极化电阻随腐蚀温度增加而减小.对于同一种铝合金,在3.5%氯化钠溶液中的腐蚀速率会随着温度的升高而增大;在同一腐蚀温度下,5A06铝合金比7A04铝合金更容易发生腐蚀,但腐蚀速率比7A04铝合金慢.  相似文献   

20.
油气田管材常常在各种应力和变形状态下服役,为了研究应力和变形对钢CO2腐蚀电化学行为的影响,利用电化学技术分别测量了16MnR钢在不同弯曲塑性变形状态下的CO2腐蚀电化学阻抗谱、线性极化电阻和自然腐蚀电位.结果表明:随着应变的增大,自然腐蚀电位负移,线性极化电阻逐渐减小,腐蚀速率增大.在拉伸和压缩塑性变形状态下16MnR钢CO2腐蚀的电化学阻抗谱均由高频容抗弧和低频感抗弧组成.随着应变的增大,容抗弧和感抗弧逐渐收缩,反应的总阻抗减小.冷加工变形增大了16MnR钢的电化学活性,使阳极溶解加快,腐蚀速率增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号