首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文采用基于分子动力学的仿真方法建立了金属钛纳米切削分子动力学模型,选择了有代表性的切削条件,通过仿真得到瞬间原子位置图像并对切削过程中材料去除现象、加工表面形成过程、系统势能和工件温度等的变化进行了分析。发现在金属钛的纳米切削过程中切屑和加工表面是由于晶格能的释放和位错的不断延伸扩展形成的。已加工表面原子的弹性恢复和晶格重构能够减缓总势能和温度不断增加的趋势,并使其伴随有微小波动。  相似文献   

2.
基于分子动力学的基本原理,构建了钛的纳米切削分子动力学仿真模型。工件原子间采用嵌入原子势EAM(Embedded atom method),工件原子与刀具原子间采用Morse势函数,研究了在不同刃口半径和刀具前角条件下,钛纳米切削过程中工件形态、系统势能、切削力以及工件温度等的变化规律。结果表明:随着刀具刃口半径增大,加工表面粗糙度增加,切削力和工件温度降低,切屑变薄;当刀具前角由负值增加到正值,钛工件承受的压应力逐渐变为剪应力,正前角刀具更有利于切削,同时在不同的刀具前角下,切向力和法向力的大小也有显著变化。  相似文献   

3.
基于分子动力学的基本原理,构建了钛的纳米切削分子动力学仿真模型。工件原子间采用嵌入原子势EAM(Embedded atom method),工件原子与刀具原子间采用Morse势函数,研究了在不同刃口半径和刀具前角条件下,钛纳米切削过程中工件形态、系统势能、切削力以及工件温度等的变化规律。结果表明:随着刀具刃口半径增大,加工表面粗糙度增加,切削力和工件温度降低,切屑变薄;当刀具前角由负值增加到正值,钛工件承受的压应力逐渐变为剪应力,正前角刀具更有利于切削,同时在不同的刀具前角下,切向力和法向力的大小也有显著变化。  相似文献   

4.
基于大规模并行算法建立了单晶Cu纳米加工新型三维分子动力学仿真模型,采用Tersoff势、嵌入原子势(embeddedatom method,EAM)和Morse势分别描述刀具原子之间、工件原子之间和工件与刀具原子之间的相互作用.研究了纳米加工过程中系统的温度分布及其热效应的影响,从位错和温度的角度对切屑形成过程和纳米加工表面的形成机理进行了分析.模拟结果表明:位错的扩展方向和切屑的堆积方向均沿着与切削方向成45°方向(〈110〉晶向)运动;系统的温度分布呈同心形,切屑处温度最高,同时在金刚石刀具中存在较大的温度梯度;随着系统温度升高,工件材料具有热软化效应;切削速度和切削刃钝圆半径对系统的温度分布影响很大.  相似文献   

5.
采用分子动力学的方法建立了金属钛的纳米振动切削模型,通过切削仿真研究了振动切削参数变化对整个振动切削过程的影响。研究发现:振动频率和振幅的增大会使接触率、切削力及切削温度的数值减小。切削速度增大会使接触率、切削力及切削温度升高,相比对切削力的改变,在切削速度小于100m/s的情况下对切削温度的影响效果更显著。刀具刃口半径的增大会使切削过程中已加工面的变质层厚度增加,表面粗糙度增大,切削力与切削温度的数值随刃口半径的增大而增加,当刃口半径跟切削厚度之比大于1时,背吃刀力及切削温度提升的速率更快。  相似文献   

6.
为改善Ni3Al基合金的纳米切削表面质量以获得更好的服役状态,结合纳米级分子动力学模拟和微观切削实验,探讨了加载温度(300~1050 K)与切削力、表面形貌的关联性。分子动力学模拟结果显示,在纳米切削Ni3Al基合金过程中,加载温度为750 K时的切削力波动相对于其他温度最小;当加载温度在600~750 K时,影响表面形貌的凸起原子数量最少,即表明加载温度为750 K左右时,Ni3Al基合金可以获得较高的表面质量。Ni3Al基合金微观切削实验表明,当加载温度在600~750 K时,加工表面轮廓可以获得较高的平整度,间接验证了在Ni3Al基合金纳米切削的分子动力学仿真结果的可行性。研究结果表明,选取合适的加载温度是改善Ni3Al基合金纳米切削加工表面质量的有效途径。  相似文献   

7.
采用分子动力学模拟方法进行了金属钛的纳米振动切削和普通纳米切削的比较研究。结果表明:在相同仿真条件下,单向振动X、Y向切削力平均值仅为普通切削的1/3左右;椭圆振动切削(elliptical vibration cutting,EVC)相比单向振动切削,剪切角变大,切屑的塑性变形降低,同时主切削力以及背吃刀力值均降低;单向振动切削和EVC的切削温度呈近似正弦脉冲变化,对比普通加工,振动切削的温度显著下降;相比于单向振动切削EVC的工件平均切削温度略高。  相似文献   

8.
采用分子动力学模拟方法进行了金属钛的纳米振动切削和普通纳米切削的比较研究.结果表明:在相同仿真条件下,单向振动X、Y向切削力平均值仅为普通切削的1/3左右;椭圆振动切削(elliptical vibration cutting,EVC)相比单向振动切削,剪切角变大,切屑的塑性变形降低,同时主切削力以及背吃刀力值均降低;单向振动切削和EVC的切削温度呈近似正弦脉冲变化, 对比普通加工,振动切削的温度显著下降;相比于单向振动切削EVC的工件平均切削温度略高.  相似文献   

9.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,首次采用三维分子动力学(MD)的方法研究了单晶锗纳米切削过程中工件原子的温度分布情况,研究了晶体的各向异性(100),(110),(111)晶面对切削温度的影响及切削温度对切削力的影响。结果表明,在切削过程中最高切削温度分布在切屑当中,达到了460 K。刀具的后刀面与已加工表面之间的区域也有较高的温度,在400 K以上。在3个不同的晶面中,(111)晶面的切削温度最高,(111)晶面的原子密度最大,即为单晶锗的密排面,释放出的能量最多。切削温度对切削力也有影响,切削温度越高,工件中原子受到的切削力越小。  相似文献   

10.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,首次采用三维分子动力学(MD)的方法研究了单晶锗纳米切削过程中工件原子的温度分布情况,研究了晶体的各向异性(100), (110), (111)晶面对切削温度的影响及切削温度对切削力的影响。结果表明,在切削过程中最高切削温度分布在切屑当中,达到了460K。刀具的后刀面与已加工表面之间的区域也有较高的温度,在400K以上。在三个不同的晶面中,(111)晶面的切削温度最高,其根本原因是由于不同晶面间的原子空间结构不同,(111)晶面的原子密度最大即为单晶锗的密排面,释放出的能量最多。切削温度对切削力也有影响,切削温度越高,工件中原子受到的切削力越小。  相似文献   

11.
采用分子动力学方法模拟了γ-TiAl在纳米尺度下的加工响应。采用规则生成的粗糙工件表面,研究其对原子去除机理的影响。通过改变织构密度和刀具半径,研究了切削过程。结果表明,工件表面形貌对亚表面缺陷的产生和原子去除有不可忽视的影响,粗糙表面会影响剪切模式下切削过程中层错剪切带的形成。提高织构密度增加了亚表面缺陷的数量,加工表面的完整性因切割方式的不同而不同。刀具的相对锐度对切削机制和纹理效果有一定影响。  相似文献   

12.
当材料切削厚度达到几个原子层时,微纳米切削实验变得困难且耗时,目前的实验条件根本无法实现.而分子动力学仿真却能克服这些困难,能十分方便地改变切削条件、刀具的几何形状和加工工件材料的性质.对基于分子动力学仿真的微纳米虚拟切削基本原理及其国内外研究的现状进行阐述.介绍了几种分子动力学可视化软件.虽然目前存在很多优秀的分子动力学可视化软件,可是没有一个是针对微纳米切削的,也不能观察温度场、应力分布等信息.分析了微纳米切削可视化研究存在的问题和发展趋势,指出微纳米加工可视化将成为探索微纳米加工机理最有效的手段.  相似文献   

13.
朱瑛  樊虎  向智 《机床与液压》2018,46(6):28-33
基于分子动力学的基本理论,在微纳米尺度下建立了单晶硅的纳米压痕分子动力学模型。研究了在纳米压痕过程中单晶硅基体的变形机理、势能变化和温度变化。研究发现:在纳米压痕过程中基体上出现了位错、空位及滑移带,基体两侧有凸起现象。当压头撤离时,基体与压头间存在颈缩现象。在系统达到平衡时系统的势能出现不同,这是因为原子位错运动使得系统增加的势能小于压头原子所做的功。温度的变化与位错变形的程度相关,位错变形越剧烈系统温度升高的越快。  相似文献   

14.
基于分子动力学的基本理论,在微纳米尺度下建立了单晶硅的纳米压痕分子动力学模型。研究了在纳米压痕过程中单晶硅基体的变形机理、势能变化和温度变化。研究发现:在纳米压痕过程中基体上出现了位错、空位及滑移带,基体两侧有凸起现象。当压头撤离时,基体与压头间存在颈缩现象。在系统达到平衡时系统的势能出现不同,这是因为原子位错运动使得系统增加的势能小于压头原子所做的功。温度的变化与位错变形的程度相关,位错变形越剧烈系统温度升高的越快。  相似文献   

15.
采用了Johnson的(EAM)模型并结合分子动力学方法,模拟了Au_(85)原子纳米团簇熔化和凝固过程。研究了Au_(85)原子纳米团簇熔点、凝固点以及该团簇的结构,在分析势能和热容量随温度变化关系的过程中,发现Au_(85)原子纳米团簇的熔化和凝固过程中的熔点和凝固点不是线性变化,均出现了负热容现象,并且团簇的凝固点低于熔点。为了探究出现这种负热容现象的原因,对熔化过程和凝固过程中该团簇的内部结构进行了对比。结果表明,该纳米团簇在加热熔化(降温凝固)的过程中表面原子的比例显著变化,引起团簇内部势能的急剧增加(快速减少),使得动能和势能之间相互快速转化。为了维持整个系统的能量平衡,势能-温度图像发生跳变,在物理上表现为负热容现象。  相似文献   

16.
采用分子动力学方法研究单晶γ-TiAl合金纳米切削过程,通过对单晶γ-TiAl合金的建模、计算和分析,讨论了不同切削深度和切削速度对切削过程的影响,结果发现:在切削过程中,随着切削深度的增大,切屑体积逐渐增大,切屑中原子排列越来越紧密,位错密度也会随之增大;但随着切削速度的增大,位错密度反而会随之降低。在一定的切削深度和切削速度范围内,切削过程中刀具前方都会产生"V"型位错环,工件的温度和势能也都会相应的增大。特别是,当切削速度为400 m/s时,刀具前方的切削表面上未出现原子错排。  相似文献   

17.
为了提高单晶Si材料在抛光时表面和亚表面完整性的目标。该研究中,使用分子动力学(MD)模拟金刚石磨粒在石墨烯润滑下三体抛光单晶Si的机械抛光方法。在相同的加工参数下调整抛光速度将结果进行比较。研究了纳米抛光过程中抛光力,原子位移,配位数,温度,势能,摩擦系数的数值发展和抛光表面形貌变化。分析表明,较大的抛光速度明显导致较高的温度和较高的势能。然而,较小的抛光速度并不会导致更少的缺陷原子和Bct5-SI/SI-II类型原子,以及较低的材料去除效率。最后,石墨烯润滑的三体抛光单晶硅可以很好的改善表面质量,减小材料的去除效率。  相似文献   

18.
利用分子动力学模拟了纳米Si O2颗粒与单晶硅(100)表面的碰撞过程,以此来分析纳米胶体射流抛光的材料去除机理。仿真结果显示:粒径为7 nm的Si O2颗粒其速度在50 m/s时,与单晶硅工件表面的碰撞作用不会引起工件表面的原子排布的变化;而若要使碰撞对单晶硅工件表面原子排布产生影响,纳米Si O2颗粒的速度需大于250 m/s。以单晶硅工件为加工对象进行了纳米胶体射流抛光加工试验。利用激光拉曼光谱对加工前后单晶硅工件表面原子排布状况进行了比较,其结果与分子动力学仿真结果吻合。利用X射线光电子能谱,研究了加工前后纳米Si O2颗粒与单晶硅工件表面原子之间化学键的变化。通过仿真和试验得出:纳米胶体射流抛光中,纳米颗粒碰撞所产生的机械作用不能直接去除工件材料,材料的去除是纳米颗粒与工件表面之间机械作用和化学作用的共同结果。  相似文献   

19.
本文运用分子动力学基本原理建立了金刚石磨粒抛光碳化硅工件的三维模拟模型,对线性增大抛光压力时系统势能、碳化硅工件的温度与材料去除量的变化规律进行了深入分析。研究结果表明:随着抛光压力的线性增加,系统势能和工件温度首先明显增大,然后增速变得缓慢,最后趋于动态平衡的状态,工件表面的材料去除形式由压实去除转变为犁沟去除,直至大变形切削过程,工件表面的原子去除数量近似指数函数变化。  相似文献   

20.
为了研究晶体取向对单晶γ-Ti Al合金纳米切削过程的影响,采用分子动力学数值方法对不同切削晶向下的切削力、切削温度、材料去除及晶格结构变化进行分析和探讨,揭示不同的晶体取向对单晶γ-Ti Al合金纳米切削质量作用机制。结果表明:在纳米切削过程中,随着晶面和晶向的变化,切削力、切削温度、材料去除和晶格结构都会有不同程度的变化;选择(010)晶面作为切削平面时切削力较小,产生的切削热较少,γ-Ti Al合金表面加工质量较好,晶格结构转变较少;(010)[100]切削晶向下工件产生的切削热较少且最容易切削,晶格结构转变最少,γ-Ti Al合金表面加工质量最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号