首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
采用Sol-gel法在普通载玻片上制备YZO薄膜.研究了陈化时间和Y掺杂量对薄膜晶体结构、表面形貌和光学性能的影响,并分析和探讨了工艺参数与结构和性能之间的关系.实验结果表明,YZO薄膜为纤锌矿结构,呈c轴择优取向生长,平均透光率(380~760nm)超过85%.实验还发现,陈化时间存在最优值,YZO薄膜随着Y掺杂量的增加晶体结晶质量下降.  相似文献   

2.
To sinter neodymium doped yttrium oxide (NDY) singe crystal several successive technologies: laser synthesis of NDY nanopowder, pulsed magnetic compacting of the powder and two stage vacuum sintering were used. With the help of abnormal grain growth samples of NDY single crystal were produced. Conditions that are necessary for abnormal grain growth in yttrium oxide as well to grow the optical grade single crystal are discussed.  相似文献   

3.
In this report, hydrothermal synthesis and the absorption properties of the cubic shaped zinc oxide nanostructures doped with different amount of yttrium (Y) metal cation (0 to 15 at.%) are demonstrated. The structural and optical properties of chemically synthesized pure and Y doped ZnO powders are investigated by using powder X-ray diffraction (XRD), field emission scanning electron spectroscopy (FESEM) and transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorbance, photoluminescence (PL), and Fourier transform infra-red spectroscopy (FT-IR). It is found that the dopant ions stabilize in wurtzite hexagonal phase of ZnO upto the concentration of less than 6 at.%, which is mainly due to the fact that the ZnO lattice expands and the optical bandgap energy decreases at this level. Increasing the dopant concentration to greater than 6 at.% leads to a contraction of the lattice, which in turn produces a significant structural disorder evidenced by shift in the XRD peaks due to additional interstitial incorporation of Y. The vibrational modes of the metal oxide groups have been identified from the IR transmission spectra. The optical absorption results show that the optical bandgap energy of Y:ZnO nanocrystals is much less as compared to that of the pure bulk ZnO particles. Doping ZnO with trivalent Y produces excess number of electrons in the conduction band and thus, shifts the absorption edge and narrows down to 80 meV approximately. PL spectra are used to study the dependence of doping on the deep-level emission, which show an enhanced blue emission after Y doping. The existence of near band edge (NBE) emission and blue emission, related to zinc interstitials are observed in the luminescence spectra of Zn(1-x)Y(x)O nanostructures.  相似文献   

4.
In this paper, we studied the effects of the aluminium dopant concentration on the optical and electrical properties of aluminium doped zinc oxide (AZO) thin films grown on soda-glass substrates by a simple chemical method. The amount of aluminium in the compound was varied from 0 to 5 atomic percent (at.%), and the typical thickness of the films produced was about 300 nm. The thin films were characterized by scanning electron microscopy and X-ray diffraction to investigate the morphology and crystallinity of the samples. The optical properties of the thin films were studied by UV–Vis spectroscopy to determinate absorption, transmittance, and the diffuse reflectance. In addition, the photoluminescence properties of the thin films, excited with a 320 nm UV laser beam, were investigated. The effects of the aluminium concentration on these optical properties are discussed. The films with 2 and 5 % doping had excellent optical transmittance (~85–90 %) in the 400–1100 nm wavelength range. The photoluminescence spectra of the AZO films revealed UV near band edge emission peaks in the 378–401 nm range and an oxygen-vacancy related peak around 471 nm. The addition of aluminium changed the band gap of zinc oxide from 3.29 to 3.41 eV, and the appearance of a new level was observed in the band gap at the higher aluminium doping concentrations. The AZO thin films showed good conductivity (in the order of 10?2 Ω cm) which allows their use as transparent electrodes. Moreover, the AZO thin films were stable in open air for 30 days.  相似文献   

5.
Vanadium-doped zinc oxide nanoparticles have been synthesized by sol-gel method. In our approach the water for hydrolysis used in the synthesis of nanopowder was slowly released followed by a thermal drying in ethyl alcohol at 250 °C. The obtained nanopowder was characterized by various techniques such as particle size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). In the as-prepared state, the powder with an average particle size of 25 nm presents a strong luminescence band in the visible range. From photoluminescence excitation (PLE) the energy position of the obtained PL band depends on the excitation wavelength and this PL band can be also observed under visible excitations. This result is very promising for visible photo catalysis applications, which was confirmed by methylene blue photo-degradation using visible lamp as a light source.  相似文献   

6.
There is uncertainty concerning the potential toxicity of zinc oxide (ZnO) nanoparticles, which may be attributed in part to a lack of understanding with regard to the physiochemical properties of the nanoparticles used in toxicological investigations. This paper reports the synthesis of a ZnO nanopowder by flame spray pyrolysis and demonstrates that the typically employed characterisation techniques such as specific surface area measurement and X-ray diffraction provide insufficient information on the sample, especially if it is intended for use in toxicity studies. Instead, a more elaborate characterisation protocol is proposed that includes particle morphology as well as detailed compositional analysis of the nanoparticle surface. Detailed transmission electron microscopy analysis illustrated the polydispersity within the sample: particles were elongated in the c-crystallographic direction, with average Ferret length ~23 nm and Ferret width ~14 nm. Dynamic light scattering (0.1 w/v% in deionised water, pH 7.4) revealed the particles were agglomerated with a modal secondary particle size of ~1.5 μm. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated the presence of carbonate and hydroxide impurities on the surface of the ZnO nanoparticles and an increase of such impurities was observed as the sample was aged, which might influence the nanoparticle dissolution and/or cellular uptake behaviour. These data will be utilised, in order to facilitate the interpretation and understanding of results from toxicological investigations using in vitro cell lines.  相似文献   

7.
An optically active ITO/Au/ITO multilayer coating (where ITO stands for an indium tin oxide with the composition 90% In2O3 + 10% SnO2 and Au is nanoparticulate gold on a thin-film poly(ethylene terephthalate) substrate) has been prepared by a solution-phase process using an ITO nanopowder dispersion in isopropanol and a solution of chloroauric acid, which was converted to colloidal gold by photolysis. A sol–gel process has been proposed for the synthesis of tin-doped indium oxide nanopowder. The properties and composition of the powder were assessed by IR spectroscopy, thermal analysis, electron microscopy, and X-ray diffraction. The phase composition of the ITO nanopowder and the optical properties of the films grown using the nanopowder have been shown to depend on the thermal annealing conditions during synthesis. Layer-by-layer growth of metal oxide films in ITO/Au/ITO coatings influences the absorption in the composite in the IR spectral region.  相似文献   

8.
Zinc oxide nanomaterials with an average particle size of 20–30 nm are readily synthesized by the reaction of zinc acetate and oxalic acid under hydrothermal conditions. The samples are characterized by XRD, SEM, TEM, UV and photoluminescence (PL) studies. The average crystal size of the as prepared ZnO nanopowder is determined by XRD and the values are in good agreement with the TEM analysis. UV absorption spectra revealed the absorption at wavelength < 370 nm indicating the smaller size of ZnO nanoparticles. The quality and purity of ZnO nanomaterial crystalline samples are confirmed by photoluminescence spectra.  相似文献   

9.
Ultraviolet-emitting, single-crystalline aligned zinc oxide (ZnO) nanocones with hexagonal caps were grown on silicon substrate via simple non-catalytic thermal evaporation process. High-purity metallic zinc powder and oxygen were used as source materials for zinc and oxygen, respectively. The detailed structural characterizations confirmed that the formed products are single-crystalline, possess a wurtzite hexagonal phase and grown along the c-axis direction. Raman-active optical-phonon E2(high) mode at 437 cm(-1) with sharp and strong UV emission at 385 nm in room-temperature photoluminescence (PL) spectrum demonstrated that the as-grown ZnO nanocones with hexagonal caps possess good-crystal quality with the excellent optical properties. Finally, a plausible growth mechanism for the formation of as-grown ZnO nanocones with hexagonal caps was also proposed.  相似文献   

10.
The effect of the solvents on particle size and morphology of ZnO is investigated. The optical properties of nano ZnO were studied extensively. During this study, zinc oxalate was prepared in aqueous and organic solvents using zinc acetate and oxalic acid as precursors. The thermo-gravimetric analysis (TGA/DTA) showed formation of ZnO at 400 °C. Nano-size zinc oxide was obtained by thermal decomposition of aqueous and organic mediated zinc oxalate at 450 °C. The phase purity was confirmed by XRD and crystal size determined from transmission electron microscopy (TEM) was found to be 22–25 nm for the aqueous and 14 –17 nm in organic mediated ZnO. Scanning electron microscope (SEM) also revealed different nature of surfaces and microstructures for zinc oxide obtained in aqueous and organic solvents. The UV absorption spectra showed sharp absorption peaks with a blue shift for organic mediated ZnO, due to monodispersity and lower particle size. Sharp peaks and absence of any impurity peaks in photoluminescence spectra (PLS) complement the above observations.  相似文献   

11.
《Optical Materials》2011,33(12):1612-1617
Lutetium and yttrium oxides are promising scintillating materials suitable for use in medical planar X-ray imaging and mammography. In this paper the procedure for preparation of europium doped mixed lutetium–yttrium oxide nanopowders using polymer complex solution synthesis method is presented. Detailed information on nanopowder phase, morphology and crystallinity are obtained using X-ray powder diffraction, SEM and TEM while optical properties are investigated by photoluminescence and radioluminescence measurements. Constituting nanoparticles are 20–40 nm in size, and have excellent structural ordering in cubic bixbyite-type. Unit cell parameter, ionic coordinates, crystal coherence size and microstrain are determined from Rietveld analysis. All powders show strong Eu3+-characteristic red emission, with an average 5D0 emission lifetime of 1.5 ms. Radioluminescence efficiency is about 15% of the commercial micron-sized Gd2O2S:Eu3+ powder while negligible level of afterglow is found.  相似文献   

12.
Silver doped tin oxide (SnO2:Ag) nanopowders were synthesized by a simple soft chemical route with 0, 5, 10 and 15 wt% concentrations of Ag. The structural, morphological, optical, photoluminescence and photocatalytic properties of the synthesized samples were studied and the results obtained are reported in this paper. XRD studies confirm the polycrystalline nature of the synthesized samples. The undoped and doped samples exhibit a strong (1 0 1) preferential growth. Decreased crystallite size is observed with Ag doping. Nanosized grains were observed for the doped samples. Peak related to Sn–O–Sn lattice vibration is observed for both the undoped and doped samples in the FTIR spectra. Peaks related to oxygen vacancies were observed at 362 and 499 nm for all the samples in the PL spectra. Enhanced photocatalytic activity was observed for the doped samples and the SnO2:Ag nanopowder with 10 wt% Ag doping concentration exhibited maximum photodegradation efficiency against the degradation of methyl orange dye.  相似文献   

13.
Transparent conducting aluminum (i.e. 2 at.%) doped zinc oxide (AZO) thin films were prepared on glass substrates by sol–gel dip coating technique using different solvents. This inexpensive dip coating method involves dipping of substrate consecutively in zinc solution and tube furnace for required cycles. Prepared films were investigated by XRD, SEM, PL, Raman spectroscopy optical and electrical studies. From the XRD studies, it confirmed the incorporation of aluminum in ZnO lattice. The prepared samples are polycrystalline nature, and these films reveal hexagonal wurtzite arrangement with (002) direction. The structural parameters such as crystallite size, dislocation density, micro strain, texture coefficient and lattice constant were investigated. SEM study showed well defined smooth and uniformed ganglia shaped grains are regularly distributed on to the entire glass substrate without any pinholes and cracks, and the average grain size is 75 nm. From the optical studies, the observed highest transmittance is 93% in the visible range and the band gap (Eg) is 3.26 eV. Room temperature PL spectra exhibited strong UV emission peak located at 386 nm for all the films. The electrical properties of the AZO thin films were studied by Hall-Effect measurements and found as n-type conductivity with high carrier concentrations (n), 2.76?×?1019 cm??3 and low resistivity (ρ), 7.56?×?10??3 Ω cm for the film deposed using methanol as solvent.  相似文献   

14.
The structural, optical and electrical properties of undoped and rare-earth (Er, Yb) doped zinc oxide (ZnO) nanopowder samples synthesized by hydrothermal method were investigated. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The optical properties of undoped and rare-earth (Er, Yb) doped ZnO were carried out with UV–visible diffuse reflectance spectroscopy techniques. XRD results reveal that Yb and Er doped ZnO nanopowders have single phase hexagonal (Wurtzite) structure without any impurities. SEM analysis indicate that dopants with different radii affected the surface morphology of ZnO nanostructures. The optical band gap of all samples were calculated from UV–Vis diffuse reflectance spectroscopy data. We have obtained band gap values of undoped, Er and Yb doped ZnO as 3.24, 3.23, 3.22 eV, respectively. Electrical characterization of the samples were made in the 280–350 K temperature range using Van der Pauw method based on Hall effect measurement. The carrier concentrations decreased for both Er and Yb doping while the Hall mobility and electrical resistivity increased with Yb, Er doping compared to undoped ZnO nanopowder at room temperature. The temperature dependent resistivity measurements of Er doped ZnO showed a metal–semiconductor transition at about 295 K, while Yb doped ZnO showed characteristic semiconductor behavior.  相似文献   

15.
Ultrasonic mist chemical vapour deposition (UM-CVD) system has been developed to prepare ZnO nanopowder. This is a promising method for large area deposition at low temperature inspite of being simple, inexpensive and safe. The particle size, lattice parameters and crystal structure of ZnO nanopowder are characterized by in situ high temperature X-ray diffraction (XRD). Surface morphology of powder was studied using transmission electron microscopy (TEM) and field emission electron microscope (FESEM). The optical properties are observed using UV-visible spectrophotometer. The influence of high temperature vacuum annealing on XRD pattern is systematically studied. Results of high temperature XRD showed prominent 100, 002 and 101 reflections among which 101 is of highest intensity. With increase in temperature, a systematic shift in peak positions towards lower 2θ values has been observed, which may be due to change in lattice parameters. Temperature dependence of lattice constants under vacuum shows linear increase in their values. Diffraction patterns obtained from TEM are also in agreement with the XRD data. The synthesized powder exhibited the estimated direct bandgap (E g) of 3.43 eV. The optical bandgap calculated from Tauc’s relation and the bandgap calculated from the particle size inferred from XRD were in agreement with each other.  相似文献   

16.
Analytical transmission electron microscopy has been used to examine the oxide dispersion in the mechanically alloyed, nickel-based, dispersion strengthened superalloy INCONEL alloy MA6000. Four mixed AI-Y oxides were identified in consolidated powder: Y3Al5O12, yttrium aluminium garnet (YAG); YAIO3, yttrium aluminium perovskite (YAP); Y4Al2O9, yttrium aluminium monoclinic (YAM), and a previously unidentified YAlOI3 polymorph. This new phase, designated yttrium aluminium hexagonal (YAH), has lattice parameters ofa = 2.206 ±0.035 nm andc = 3.219 ± 0.096 nm, a space group of P63mc and consists of 18 closepacked oxygen layers with the yttrium and aluminium cations in the resulting interstices. It is proposed that the high local stresses, strains and temperatures which occur during the mechanical alloying process facilitate the formation of the highly complex YAH phase. All four oxide types also contain significant amounts of zirconium (up to 13 cation at%) which randomly substitutes for both the yttrium and aluminium ions. This substitution was sufficient to have caused the removal of 75% of the zirconium from solution in the matrix.  相似文献   

17.
Singe phase bismuth ferrite doped by yttrium (Bi1?xYxFeO3, x = 0, 0.05, 0.1, 0.15, 0.2 and 0.25) was synthesized by solid-state reaction followed by sintering. Their structural, morphological, ferroelectric, magnetic and optical properties were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), vibrating sample magnetometer (VSM) and UV–visible spectrophotometry. Rhombohedrally-distorted perovskite structure of bismuth ferrite was confirmed by XRD analysis and Rietveld refinement. Microstrain and crystallite size were analyzed using Williamson-Hall model. SEM micrographs showed agglomerated particles. The doping of yttrium into the BiFeO3 (BFO) lattice enhanced the ferroelectric and magnetic properties and the leakage current density was reduced. The energy band gap was also decreased by increasing yttrium content, leading to an enhancement of light absorption capability. The photocatalytic activity of all samples has been evaluated by the decolorization of methyl orange (MO) under visible light irradiation. The results indicated that increasing the concentration of yttrium into the BiFeO3 (BFO) structure improved the photodegradation up to 71%.  相似文献   

18.
The enhancement of out-coupling efficiency of organic light emitting diode (OLED) using SiO2-polymer composite layers was investigated. The SiO2-polymer composite was made from a SiO2 nanopowder and commercial UV-hardeners. The composite layer was coated on glass by dip-coating method in a SiO2 suspension, followed by spin-coating of 1 microm thick UV-hardener of was found that the optical properties were depend on the quantity of SiO2 nanopowder in the composite layer and dispersion of SiO2 suspension. 194/440 nm size of SiO2 nanopowders were added to the composite layer to enhance the light scattering effect. The OLED device which the SiO2-polymer composite layer was applied showed enhanced out-coupling efficiency around 30%.  相似文献   

19.
As an emerging preparation technology,wet chemical method has been employed widely to produce lots of alloy materials such as W and Mo based alloys,owing to its unique technical advantages.Ascertaining the synthesis mechanism behind wet chemical method is indispensable for controlled synthesis of highquality W-Y2 O3 composite powder precursor.The co-deposition mechanism of yttrium and tungsten component behind the wet chemical method of preparing yttrium-doped tungsten composite nanopowder was investigated systematically in this work.A series of co-deposited composite powders fabricated under different acidity conditions were used as research targets for investigating the effect of surface composition and structure on co-deposition efficiency.It was found that white tungstic acid has more W-OH bonds and much higher co-deposition efficiency with Y^3+ions than yellow tungstic acid.It is illustrated that the coordination reaction between W-OH bonds on tungstic acid particles and Y^3+ions brings the co-deposition of yttrium and tungsten component into being.Through displacing H^+ions in W-OH bonds,Y^3+ions can be adsorbed on the surface of or incorporated into tungstic acid particles in form of ligand.Consequently,to control and regulate Y2 O3 content in powder precursor accurately,H^+ion concentration in wet chemical reaction should be in range of 0.55-2.82 mol L^-1 to obtain white tungstic acid.Besides,H^+ion concentration also has prominent effect on the grain size and morphology of reduced powder precursor.The optimal value should be around 1.58 mol L^-1,which can lead to minimum W grain size(about 17 nm) without bimodal structure.The chemical mechanism proposed in this work could produce great sense to preparation of high-quality precursor for sintering high-performance Y2 O3 dispersion strengthened W based alloys.Our work may also shed light on the approach to exploit analogous synthesis mechanism in other alloy systems.  相似文献   

20.
This review focuses on the growth and optical properties of amorphous zinc oxide (ZnO) thin films. A high quality ZnO films fabricated by dip-coating (sol–gel) method were grown on quartz and glass substrates at temperature equal to 350 K. The amorphous nature of the films was verified by X-ray diffraction. Atomic Force Microscopy was used to evaluate the surface morphology of the films. The optical characteristics of amorphous thin films have been investigated in the spectral range 190–1100 nm. Measurement of the polarized optical properties was shows a high transmissivity (80–99%) and low absorptivity (<5%) in the visible and near infrared regions at different angles of incidence. Linear optical properties were investigated by classic and Time-Resolved Photoluminescence (TRPL) measurements. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. An innovative TRPL technique has enabled the measurement of the photoluminescence decay time as a function of temperature. TRPL measurements reveal a multiexponential decay behavior typical for amorphous thin films. Second and third harmonic generation measurements were performed by means of the rotational Maker fringe technique using Nd:YAG laser at 1064 nm in picosecond regime for investigations of the nonlinear optical properties. The obtained values of second and third order nonlinear susceptibilities were found to be high enough for the potential applications in the optical switching devices based on refractive index changes. Presented spectra confirm high structural and optical quality of the investigated zinc oxide thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号