首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the effect of diabetes on antinociception produced by intracerebroventricular injection of delta-opioid receptor agonists [D-Pen2,5]enkephalin (DPDPE) and [D-Ala2]deltorphin II. The antinociceptive effect of DPDPE (10 nmol), administered i.c.v., was significantly greater in diabetic mice than in non-diabetic mice. The antinociceptive effect of i.c.v. DPDPE was significantly reduced in both diabetic and non-diabetic mice following pretreatment with 7-benzylidenenaltrexone (BNTX), a selective delta 1-opioid receptor antagonist, but not with naltriben (NTB), a selective delta 2-opioid receptor antagonist. There were no significant differences in the antinociceptive effect of [D-Ala2]deltorphin II (3 nmol, i.c.v.) in diabetic and non-diabetic mice. Furthermore, the antinociceptive effect of i.c.v. [D-Ala2]deltorphin II was significantly reduced in both diabetic and non-diabetic mice following pretreatment with NTB, but not with BNTX. In conclusion, mice with diabetes are selectively hyper-responsive to supraspinal delta 1-opioid receptor-mediated antinociception, but are normally responsive to activation of delta 2-opioid receptors.  相似文献   

2.
To analyze the selectivity of delta receptor subtypes to regulate different classes of G proteins, the expression of the alpha-subunits of Gi2, Gi3, Go1, Go2, Gq and G11 transducer proteins was reduced by administration of oligodeoxynucleotides (ODNs) complementary to sequences in their respective mRNAs. Mice receiving antisense ODNs to Gi2 alpha, Gi3 alpha, Go2 alpha and G11 alpha subunits showed an impaired antinociceptive response to all the delta agonists evaluated. An ODN to Go1 alpha specifically blocked the antinociceptive effect of the agonist of delta-1 receptors, [D-Pen2,5]enkephalin (DPDPE), without altering the activity of [D-Ala2]deltorphin II or [D-Ser2]-Leu-enkephalin-Thr (DSLET). In mice treated with an ODN to Gq alpha, the effects of the agonists of delta-2-opioid receptors were reduced, but not those of DPDPE. Thus, Go1 proteins are selectively linked to delta-1-mediated analgesia, and Gq proteins are related to delta-2-evoked antinociception. After impairing the synthesis of Go1 alpha subunits, DPDPE exhibited an antagonistic activity on the antinociception produced by [D-Ala2]deltorphin II. After treatment with ODNs complementary to sequences in Gq alpha or PLC-beta 1 mRNAs, the analgesic capacity of [D-Ala2]deltorphin II was diminished. However, the delta-2-agonist did not alter the antinociceptive activity of DPDPE. An ODN complementary to nucleotides 7 to 26 of the murine delta receptor reduced the analgesic potency of [D-Ala2]deltorphin II, but not that observed for DPDPE. In these mice, [D-Ala2]deltorphin II did not antagonize the effect of DPDPE. These results suggest the existence of different molecular forms of the delta opioid receptor, and the involvement of inositol-signaling pathways in the supraspinal antinociceptive effects of delta agonists.  相似文献   

3.
Using approaches emphasizing differential antagonism of receptor selective agonists and cross-tolerance paradigms, evidence in vivo has suggested the existence of subtypes of opioid delta receptors, which have been termed delta 1 and delta 2. Recent work has elucidated the structure of an opioid delta receptor. The present investigation attempted to continue to test the hypothesis of subtypes of delta receptors and to correlate the cloned delta receptor with the existing pharmacological classification. Synthetic oligodeoxynucleotides (oligos) complementary to the 5' end of the cloned delta receptor coding region (antisense) or its corresponding sequence (sense) were given by intracerebroventricular (i.c.v.) administration to mice, twice-daily for 3 days and antinociceptive responses to selective agonists at putative delta 1 and delta 2 receptors were subsequently determined. Treatment with antisense, but not sense, oligo significantly inhibited the response to [D-Ala2,Glu4]deltorphin (delta 2 agonist), but not to [D-Pen2,D-Pen5]enkephalin (DPDPE, delta 1 agonist). Further, subsequent administration of DPDPE elicited a full antinociceptive response in the same antisense oligo treated mice which did not show a significant response to [D-Ala2,Glu4]deltorphin while antisense oligo treated mice which responded to DPDPE did not show antinociception when tested subsequently with [D-Ala2,Glu4]deltorphin. The data suggest that the cloned delta receptor corresponds to that pharmacologically classified as delta 2 and continue to support the concept of subtypes of opioid delta receptors.  相似文献   

4.
Evidence in vivo has suggested the existence of subtypes of the delta opioid receptor (DOR), which have been termed delta 1 and delta 2. These proposed DOR subtypes are thought to be activated by [D-Pen2, D-Pen5]enkephalin (DPDPE, delta 1) and [D-Ala2, Glu4]deltorphin (delta 2). Recent work in which an antisense oligodeoxynucleotide (oligo) to a cloned DOR was administered by the intrathecal (i.th.) route has demonstrated a reduction in the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4]deltorphin, but not of [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO, mu agonist) in mice. The present investigation has extended these observations by administering the same DOR antisense oligo sequence by the intracerebroventricular (i.c.v.) route and evaluating the antinociceptive actions of i.c.v. agonists selective for delta, mu and kappa receptors. I.th. treatment with DOR antisense oligo, but not mismatch oligo, significantly inhibited the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4]deltorphin but not of i.th. DAMGO or U69,593 (kappa agonist), confirming previous data. In contrast, i.c.v. DOR antisense oligo, but not mismatch oligo, selectively inhibited the antinociceptive response to i.c.v. [D-Ala2, Glu4]deltorphin without altering the antinociceptive actions of i.c.v. DPDPE, DAMGO or U69,593. The data suggest that the cloned DOR corresponds to that pharmacologically classified as delta 2 and further, suggest that this delta receptor subtype may play a major role in eliciting spinal delta-mediated antinociception.  相似文献   

5.
The effects of chronic administration of [D-Pen2, D-Pen5]enkephalin and [D-Ala2, Glu4]deltorphin II, the selective agonists of the delta 1- and delta 2-opioid receptors, on the binding of [3H]MK-801, a noncompetitive antagonist of the N-methyl-D-aspartate receptor, were determined in several brain regions of the mouse. Male Swiss-Webster mice were injected intracerebroventricularly (i.c.v.) with [D-Pen2, D-Pen5]enkephalin or [D-Ala2, Glu4]deltorphin II (20 micrograms/mouse) twice a day for 4 days. Vehicle injected mice served as controls. Previously we have shown that the above treatment results in the development of tolerance to their analgesic activity. The binding of [3H]MK-801 was determined in brain regions (cortex, midbrain, pons and medulla, hippocampus, striatum, hypothalamus and amygdala). At 5 nM-concentration, the binding of [3H]MK-801 was increased in cerebral cortex, hippocampus, and pons and medulla of [D-Pen2, D-Pen5]enkephalin treated mice. In [D-Ala2, Glu4]deltorphin II treated mice, the binding of [3H]MK-801 was increased in cerebral cortex and hippocampus. The changes in the binding were due to increases in the Bmax value of [3H]MK-801. It is concluded that tolerance to delta 1- and delta 2-opioid receptor agonists is associated with up-regulation of brain N-methyl-D-aspartate receptors, however, some brain areas affected differ with the two treatments. The results are consistent with the recent observation from this laboratory that N-methyl-D-aspartate receptors antagonists block tolerance to the analgesic action of delta 1- and delta 2-opioid receptor agonists.  相似文献   

6.
The effect of delta opioid agonists - [D-Ala2, D-Leu5]-enkephalin (DADLE), [D-Pen2, D-Pen5]-enkephalin (DPDPE) and deltorphin II - on acidified ethanol induced gastric mucosal lesions was studied in the rat compared with that of morphine. It was found that DADLE, DPDPE, deltorphin II and morphine exerted a dose-dependent inhibition on the mucosal lesions injected subcutaneously, their ID50 values were 0.037, 1.8, 3.5 and 0.35 micromoles/kg, respectively. Naltrindole (10 mg/kg sc.), the selective delta opioid receptor antagonist, inhibited the gastroprotective effect of DADLE, DPDPE and deltorphin II, but it failed to antagonise the effect of morphine. Our results suggest that 1. delta receptors are involved in opioid-mediated gastroprotection, 2. ethanol-induced gastric mucosal damage in the rat may be a quick, simple in vivo model for screening opioid delta receptor agonists and antagonists in the periphery.  相似文献   

7.
1. The effects of selective opioid receptor agonists and antagonists on N-methyl-D-aspartate (NMDA, 10 microM)-induced release of [3H]-dopamine and [14C]-acetylcholine (ACh) from superfused neostriatal slices were studied to investigate the possible occurrence of functional kappa-opioid receptor subtypes in rat brain. 2. The kappa receptor agonists (-)-ethylketocyclazocine ((-)-EKC), U69593 and the endogenous opioid peptide dynorphin A1-13 caused a naloxone-reversible inhibition of NMDA-induced [3H]-dopamine release, with pD2 values of about 9, 8.5 and 8.2, respectively, whereas both the mu agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO) and the delta agonist D-Pen2-D-Pen5-enkephalin (DPDPE) were ineffective in this respect. The inhibitory effect of submaximally effective concentrations of dynorphin A1-13, U69593 and (-)-EKC on NMDA-induced [3H]-dopamine release were not changed by the delta1/delta2-opioid receptor antagonist naltrindole (up to a concentration of 1 microM, but reversed by the kappa receptor antagonist nor-binaltorphimine (nor-BNI), with an IC50) as low as 0.02 nM, indicating the involvement of U69593-sensitive kappa1-opioid receptors. 3. NMDA-induced [14C]-ACh release was reduced in a naloxone-reversible manner by DPDPE (pD2 about 7.2), dynorphin A1-13 (pD2 6.7) and EKC (pD2 6.2), but not by U69593 and DAMGO. The inhibitory effect of a submaximally effective concentration of DPDPE, unlike those of dynorphin A1-13 and (-)-EKC, on NMDA-induced [14C]-ACh release was antagonized by naltrindole with an IC50 of 1 nM, indicating the involvement of delta-opioid receptors in the inhibitory effect of DPDPE. On the other hand, the inhibitory effects of dynorphin A1-13 and (-)-EKC on [14C]-ACh release were readily antagonized by nor-BNI with an IC50 of about 3 nM. A 100 fold higher concentration of nor-BNI also antagonized the inhibitory effect of DPDPE, indicating the involvement of U69593-insensitive kappa2-opioid receptors in the inhibitory effects of dynorphin A1-13 and (-)-EKC. 4. Although naloxone benzoylhydrazone (NalBzoH), displaying high affinity towards the putative kappa3-opioid receptor, antagonized the inhibitory effects of dynorphin A1-13 and (-)-EKC on [3H]-dopamine and [14C]-ACh release as well as that of U69593 on [3H]-dopamine release, it displayed a low apparent affinity (IC50 about 100 nM) in each case. 5. In conclusion, whereas activation of kappa1-opioid receptors causes presynaptic inhibition of NMDA-induced dopamine release, kappa2 receptor activation results in inhibition of ACh release in rat neostriatum. As such, this study is the first to provide unequivocal in vitro evidence for the existence of functionally distinct kappa-opioid receptor subtypes in the brain.  相似文献   

8.
1. The density and affinity of binding sites for the delta-selective opioid ligands [3H]-[D-Ala2, Asp4]deltorphin (DELT-I), [3H]-[D-Ala2Glu4]-deltorphin (DELT-II), [3H]-[D-Pen2,D-Pen5]enkephalin (DPDPE), and [3H]-naltrindole (NTI) were determined in whole brain from 10, 15, 25 and 60 day-old C57BL mice. 2. At all ages, the analyses of the homologous displacement curves, gave best fits to single rather than to multiple site models. The binding capacity (Bmax) labelled by [3H]-NTI was about one half that labelled by [3H]-DELT-I, [3H]-DELT-II and [3H]-DPDPE. In 25 and 60 day-old mouse brain the DPDPE Bmax was 25% less than the deltorphin-II Bmax. 3. In saturation experiments, specific binding of [3H]-DELT-I on adult mouse brain homogenates was best fitted by a two-site model (34%, high affinity site, Kd = 1.08 nM and 66% low affinity sites, Kd = 39.9 nM). 4. DPDPE produced a biphasic inhibition of specific [3H]-DELTI-I binding, from 15 days of age onwards. The relative percentage of high and low affinity sites was 72% and 28% in 15 day-, 65% and 35% in 25 day- and 30% and 70% in 60 day-old mice. 5. In adult mouse brain labelled with [3H]-DELT-I, DELT-II recognized 71% of high-affinity and 29% of low-affinity sites DELT-I and DPDPE produced monophasic inhibition of specific [3H]-DELT-II binding to brain homogenates of adult mice. 6. These data suggest that a sub-population of delta-sites (probably the delta 2-subtype), recognized by DELT-I, with high affinity for DELT-II and low affinity for DPDPE develops from 25 days onward. 7. In electrically stimulated mouse vas deferens (MVD) the rank order of potency of the three delta-agonists was: DELT-I > DELT-II > DPDPE in 10 day-old mice: and DELT-I- DELT-II > DPDPE, from 25 days onward. During this time, the potency of DELT-II increased about 15 fold whereas the potency of DELT-I and DPDPE increased only 5 times. The higher efficacy of DELT-II could depend on receptor maturation towards the delta 2-subtype.  相似文献   

9.
Quantitative binding studies resolved two high-affinity [3H][D-Ala2,D-Leu5]enkephalin binding sites in rat brain membranes depleted of mu binding sites by pretreatment with the irreversible agent BIT. The two binding sites had lower (delta ncx-2, Ki = 96.6 nM) and higher (delta ncx-1, Ki = 1.55 nM) affinity for DPDPE. The ligand-selectivity profile of the delta ncx-1 site was that of a classic delta binding site. The ligand-selectivity profile of the delta ncx-2 site was neither mu- or delta-like. The Ki values of selected agents for the delta ncx-2 site were: [pCl]DPDPE (3.9 nM), DPLPE (140 nM), and DAMGO (2.6 nM). Under these assay conditions, [3H][D-Ala2,D-Leu5]enkephalin binding to the cells expressing the cloned mu receptor is very low and pretreatment of cell membranes with BIT almost completely inhibits [3H]DAMGO and [3H][D-Ala2,D-Leu5]enkephalin binding. Intracerebroventricular administration of antisense DNA to the cloned delta receptor selectively decreased [3H][D-Ala2,D-Leu5]enkephalin binding to the delta ncx-1 site. Administration of buprenorphine to rats 24 h prior to preparation of membranes differentially affected mu, delta ncx-1, and delta ncx-2 binding sites. Viewed collectively, these studies have identified a novel non-mu- non-delta-like binding site in rat brain.  相似文献   

10.
1. In rats, the interaction between the mu-opioid agonist dermorphin and the delta-opioid agonist [D-Ala2, Glu4]deltorphin was studied in binding experiments to delta-opioid receptors and in the antinociceptive test to radiant heat. 2. When injected i.c.v., doses of [D-Ala2, Glu4]deltorphin higher than 20 nmol produced antinociception in the rat tail-flick test to radiant heat. Lower doses were inactive. None of the doses tested elicited the maximum achievable response. This partial antinociception was accomplished with an in vivo occupancy of more than 97% of brain delta-opioid receptors and of 17% of mu-opioid receptors. Naloxone (0.1 mg kg-1, s.c.), and naloxonazine (10 mg kg-1, i.v., 24 h before), but not the selective delta-opioid antagonist naltrindole, antagonized the antinociception. 3. In vitro competitive inhibition studies in rat brain membranes showed that [D-Ala2, Glu4]deltorphin displaced [3H]-naltrindole from two delta-binding sites of high and low affinity. The addition of 100 microM Gpp[NH]p produced a three fold increase in the [D-Ala2, Glu4]deltorphin Ki value for both binding sites. The addition of 10 nM dermorphin increased the Ki value of the delta-agonist for the high affinity site five times. When Gpp[NH]p was added to the incubation medium together with 10 nM dermorphin, the high affinity Ki of the delta-agonist increased 15 times. 4. Co-administration into the rat brain ventricles of subanalgesic doses of dermorphin and [D-Ala2, Glu4]deltorphin resulted in synergistic antinociceptive responses. 5. Pretreatment with naloxone or with the non-equilibrium mu-antagonists naloxonazine and beta-funaltrexamine completely abolished the antinociceptive response of the mu-delta agonist combinations. 6. Pretreatment with the delta-opioid antagonists naltrindole and DALCE reduced the antinociceptive response of the dermorphin-[D-Ala2, Glu4]deltorphin combinations to a value near that observed after the mu-agonist alone. At the dosage used, naltrindole occupied more than 98% of brain delta-opioid receptors without affecting mu-opioid-receptors. 7. These data suggest that in the rat tail-flick test to radiant heat, mu- and delta-opioid agonists co-operate positively in evoking an antinociceptive response. Although interactions between different opioid pathways cannot be excluded, in vitro binding results indicate that this co-operative antinociception is probably mediated by co-activation of the delta-opioid receptors at the cellular level by the mu- and delta-agonist.  相似文献   

11.
Phosphoinositide (PI) hydrolysis, stimulated by 1S,3R-1-amino-cyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD), an agonist of metabotropic glutamate receptors (mGluRs), was measured in hippocampal and prefrontal cortical slices obtained from rats which had been trained for 8 days in a Morris water maze and had learned an allocentric spatial task. Brain slices were pre-labeled with myo-3H-inositol and 1S,3R-ACPD (100 microM) stimulation was assessed by measuring the accumulation of [3H]inositol phosphates ([3H]IPs) in the presence of Li+. Measurements conducted 24 h following the last training session revealed no differences in 1S,3R-ACPD-stimulated formation of [3H]IPs, either in the hippocampus or in the prefrontal cortex. However, a diminished response to mGluRs stimulation was detected in the hippocampus of animals re-trained after an 11-day interval. The decrease was not evident in the prefrontal cortex. These data indicate a differential involvement of the hippocampus and the prefrontal cortex in the processing of spatial information and correspond to the functional differences attributed to these areas.  相似文献   

12.
Neuropathic pains have often been classified as opioid-resistant. Here, spinal (intrathecal) actions of morphine and nonmorphine opioids have been studied in a nerve ligation model of neuropathic pain in rats. Mechanical allodynia was evaluated using von Frey filaments. Nerve-injured animals exhibited allodynia that was stable for up to 6 weeks after the surgery. Morphine did not alter allodynia at doses up to 300 nmol (100 micrograms). In contrast, [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO), a high-efficacy mu opioid agonist, produced a significant, dose-related antiallodynic action. [D-Ala2, Glu4]deltorphin (delta agonist) produced a significant antiallodynic effect only at 300 nmol, reaching approximately 70% of the maximum. Coadministration of morphine with a dose of [D-Ala2, Glu4]deltorphin, which was inactive alone, produced a significant and long-lasting antiallodynic action that was antagonized by NTI (delta receptor antagonist); NTI alone had no effect. Although blockade of cholecystokinin-B (CCKB) receptors with L365,260 did not produce effects alone, a significant antiallodynic action was observed when coadministered with morphine; this elevation of nociceptive threshold was abolished by NTI. The finding that DAMGO, but not very large doses of morphine, produced antiallodynic actions suggests that the ability of mu opioids to alleviate the allodynia is related, in part, to efficacy at postsynaptic mu receptors. At an inactive dose, a delta agonist or a CCKB antagonist enhanced morphine antiallodynic efficacy in an NTI-sensitive fashion. CCKB receptor blockade may enhance endogenous enkephalin actions, resulting in enhancement of morphine efficacy through a mu-delta receptor interaction.  相似文献   

13.
For 5 consecutive days repeated intracerebroventricular (i.c.v.) administration of antisense oligodeoxynucleotides (ODNs) to G alpha subunit mRNAs was used to impair the function of mouse Gi1, Gi2, Gi3 and Gx/z regulatory proteins. Decreases of 20 to 60% on the G alpha-like immunoreactivity could be observed in neural structures of mouse brain, an effect that was not produced by a random-sequence ODN used as a control. The ODN to Gi1 alpha subunits lacked effect on opioid-evoked analgesia. In mice injected with the ODN to Gi2 alpha subunits the antinociceptive activity of all the opioids studied appeared greatly impaired. The ODN to Gi3 alpha subunits reduced the effects of the selective agonists of delta opioid receptors, [D-Pen2,5]-enkephalin and [D-Ala2]deltorphin II. Conversely, the analgesia evoked by opioids binding mu opioid receptors, [D-Ala2, N-MePhe4,Gly-ol5]enkephalin and morphine, appeared consistently and significantly attenuated in mice injected with the ODN to Gx/z alpha. The effect of the neuropeptide beta-endorphine-(1-31) agonist at mu and delta receptors was also reduced by ODNs to Gi3 alpha or Gx/z alpha subunits. l.c.v. injection of antibodies directed to these G alpha subunits antagonized opioid-induced analgesia with a pattern similar to that observed for the ODNs. Thus, the mu and delta opiod receptors regulate different classes of G transducer proteins to mediate the analgesic effect of agonists. The in vivo antisense strategy and the use of specific antibodies to G alpha subunits gave comparable results, indicating that in the neural tissue the mRNAs and the G alpha subunits can be accessed by the corresponding ODNs and IgGs.  相似文献   

14.
Mice lacking the mu-opioid receptor (MOR) gene have been successfully developed by homologous recombination and these animals show complete loss of analgesic responses to morphine as well as loss of place-preference activity and physical dependence on this opioid. We report here quantitative autoradiographic mapping of opioid receptor subtypes in the brains of wild-type, heterozygous and homozygous mutant mice to demonstrate the deletion of the MOR gene, to investigate the possible existence of any mu-receptor subtypes derived from a different gene and to determine any modification in the expression of other opioid receptors. Mu-, delta-, kappa1- and total kappa-receptors, in adjacent coronal sections in fore- and midbrain and in sagittal sections, were labelled with [3H]DAMGO (D-Ala2-MePhe4-Gly-ol5 enkephalin), [3H]DELTI (D-Ala2 deltorphinI), [3H]CI-977 and [3H]bremazocine (in the presence of DAMGO and DPDPE) respectively. In heterozygous mice, deficient in one copy of the MOR gene, mu-receptors were detectable throughout the brain at about 50% compared to wild-type. In brains from mu-knockout mice there were no detectable mu-receptors in any brain regions and no evidence for mu-receptors derived from another gene. Delta-, kappa1- and total kappa-receptor binding was present in all brain regions in mutant mice where binding was detected in wild-type animals. There were no major quantitative differences in kappa- or delta-binding in mutant mice although there were some small regional decreases. The results indicate only subtle changes in delta- and kappa-receptors throughout the brains of animals deficient in mu-receptors.  相似文献   

15.
N-Methyl-D-aspartate (NMDA) receptor antagonists have been shown to block the development of antinociceptive tolerance to morphine. Assessment of the effects of NMDA antagonists on development of antinociceptive tolerance to selective opioid mu (mu) and delta (delta) agonists, however, has not been reported. In these experiments, selective mu and delta receptor agonists, and morphine, were repeatedly administered to mice either supraspinally (i.c.v.) or systemically (s.c.), alone or after pretreatment with systemic NMDA antagonists. Antinociception was evaluated using a warm-water tail-flick test. Repeated i.c.v. injections of mu agonists including morphine, fentanyl, [D-Ala2, NMePhe4, Gly-ol]enkephalin (DAMGO) and Tyr-Pro-NMePhe-D-Pro-NH2 (PL017) or [D-Ala2, Glu4]deltorphin, a delta agonist, or s.c. injections of morphine or fentanyl, produced antinociceptive tolerance as shown by a significant rightward displacement of the agonist dose-response curves compared to controls. Single injections or repeated administration of MK801 (a non-competitive NMDA antagonist) or LY235959 (a competitive NMDA antagonist) at the doses employed in this study did not produce behavioral toxicity, antinociception or alter the acute antinociceptive effects of the tested opioid agonists. Consistent with previous reports, pretreatment with MK801 or LY235959 (30 min prior to agonist administration throughout the tolerance regimen) prevented the development of antinociceptive tolerance to i.c.v. or s.c. morphine. Neither NMDA antagonist, however, affected the development of antinociceptive tolerance to i.c.v. fentanyl, DAMGO, or [D-Ala2, Glu4]deltorphin. Additionally, MK801 pretreatment did not affect the development of antinociceptive tolerance to i.c.v. PL017 or to s.c. fentanyl. Further, MK801 pretreatment also did not affect the development of tolerance to the antinociception resulting from a cold-water swim-stress episode, previously shown to be a delta-opioid mediated effect. These data lead to the suggestion that the mechanisms of tolerance to receptor selective mu and delta opioids may be regulated differently from those associated with morphine. Additionally, these findings emphasize that conclusions reached with studies employing morphine cannot always be extended to 'opiates' in general.  相似文献   

16.
Analogs of Met-enkephalin and [D-Pen2, D-Pen5]enkephalin (DPDPE) containing the partially fluorinated amino acid 4,4-difluoro-2-aminobutyric acid (DFAB) in the 2- or 3-position of the peptide sequence were synthesized and their opioid activities and receptor selectivities were determined in vitro. The linear fluorinated [D-DFAB2, Met5-NH2]enkephalin showed mu and delta agonist potencies comparable to those of natural [Leu5]enkephalin. The partially fluorinated DPDPE analogs behaved differently as compared with their non-fluorinated correlates. While L-amino acid substitution in position 3 of DPDPE usually resulted in higher delta agonist potency than D-amino acid substitution. [D-DFAB3]DPDPE turned out to be a more potent delta agonist than [L-DFAB3]DPDPE. Furthermore, [D-DFAB3]DPDPE showed over 100-fold higher delta agonist potency than [D-Abu3]DPDPE (Abu = 2-aminobutyric acid), indicating that the fluorine substituents interact favorably with a delta opioid receptor subsite.  相似文献   

17.
Naltriben (NTB) is a selective antagonist for the putative delta2-opioid receptor. We have determined the regional kinetics and pharmacological profile of [3H]naltriben in vivo in mouse brain. After i.v. administration to CD1 mice, [3H]naltriben uptake and retention were high in striatum, cortical regions and olfactory tubercles, and low in superior colliculi and cerebellum. Robust rank order correlation was found between [3H]naltriben uptake in discrete brain regions and prior delta-opioid receptor binding determinations in vitro and in vivo. [3H]Naltriben binding in vivo was saturable, and was blocked by the delta-opioid receptor antagonist naltrindole, but not by the mu-opioid receptor antagonist cyprodime or the K-opioid receptor agonist (trans)-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]ben zeneacetamide mesylate (U50,488H). (E)-7-Benzylidenenaltrexone (BNTX), a selective antagonist for the putative delta1-opioid receptor, was 9.6- to 12.9-fold less potent than naltriben as an inhibitor of [3H]naltriben binding. Thus, the sites labeled by [3H]naltriben in vivo may correspond to the delta2-opioid receptor subtype. Such assignment is not definitive, particularly considering the 4-fold higher brain uptake of naltriben as compared to (E)-7-benzylidenenaltrexone. Moreover, the regional distribution of [3H]naltriben in brains from CXB-7/BY (CXBK) mice, a strain that shows supraspinal delta1- but not delta2-opioid receptor agonist effects, was quite similar to that found for CD1 mice.  相似文献   

18.
A series of deltorphin I analogs containing D- or L-N-methylalanine (MeAla), D- or L-proline (Pro), alpha-aminoisobutyric acid (Aib), sarcosine (Sar) or D-tert-leucine (Tle) in place of D-Ala2, or phenylalanine in place of Tyr1, was synthesized. The opioid activity profiles of these peptides were determined in mu and delta opioid receptor-representative binding assays and bioassays in vitro as well as in the rat tail flick test in vivo. In comparison with the deltorphin I parent, both the L- and the D-MeAla2-analog were slightly more potent delta agonists in the mouse vas deferens (MDV) assay, and the D-MeAla2-analog showed two-fold higher antinociceptive potency in the analgesic test. In view of the fact that deltorphin analogs with an unsubstituted L-amino acid residue in the 2-position generally lack opioid activity, the observed high delta opioid potency of [L-MeAla2]deltorphin I is postulated to be due to the demonstrated presence of a conformer with a cis Tyr1-MeAla2 peptide bond, since the cis conformer allows for a spatial arrangement of the pharmacophoric moieties in the N-terminal tripeptide segment similar to that in active deltorphin analogs containing a D-amino acid residue in the 2-position. Substitution of Aib in the 2-position led to a compound, H-Tyr-Aib-Phe-Asp-Val-Val-Gly-NH2, which displayed lower delta receptor affinity than the parent peptide but higher delta selectivity and, surprisingly, three times higher antinociceptive potency. The D- and L-Pro2-, Sar2- and D-Tle2-analogs showed much reduced delta receptor affinities and were inactive in the tail flick test. Replacement of Tyr1 in deltorphin I with Phe produced a 32-fold decrease in delta receptor affinity but only a 7-fold drop in antinociceptive potency.  相似文献   

19.
The present experiments evaluated the influence of intraventricular mu and delta opioid receptors on affective vocal and reflexive responses to aversive stimuli in socially inexperienced, as well as defensive and submissive responses in defeated, adult male Long-Evans rats. Defeat stress consisted of: (1) an aggressive confrontation in which the experimental intruder rat exhibited escape, defensive and submissive behaviors [i.e., upright, supine postures and ultrasonic vocalizations (USV)], and subsequently, (2) protection from the resident stimulus rat with a wire mesh screen for 10-20 min. Defeat stress was immediately followed by an experimental session with tactile startle (20 psi). The mu opioid receptor agonists morphine (0.1-0.6 microg i.c.v.) and [D-Ala2-N-Me-Phe4-Gly5-ol]-enkephalin (DAMGO; 0.01-0.3 microg i.c.v.), and the delta opioid receptor agonist [D-Pen2,5]-enkephalin (DPDPE; 10-100 microg i.c.v.) dose-dependently decreased startle-induced USV and increased tail-flick latencies in socially inexperienced and defeated rats. Of greater interest, morphine, DAMGO and DPDPE increased the occurrence of the submissive crouch posture, and defeated rats were more sensitive than socially inexperienced rats to the startle-induced USV-suppressive and antinociceptive effects of morphine and DPDPE. The antinociceptive effects of DAMGO were likewise obtained at lower doses in defeated rats. Finally, the USV-suppressive effects of morphine and DAMGO were reversed with the mu receptor antagonist naltrexone (0.1 mg/kg i.p.), but the USV-suppressive effects produced by DPDPE were not reversed with the delta receptor antagonist naltrindole (1 mg/kg i.p.). These results confirm mu, but not delta opioid receptor activation as significant in affective vocal, passive-submissive behavior, as well as reflexive antinociception. Furthermore, similar to previous studies with restraint and electric shock stress, the facilitation of mu opioid effects on vocal responses and antinociception is consistent with the proposal that defeat stress activated endogenous opioid mechanisms.  相似文献   

20.
The delta opioid receptor-selective, enzymatically stable peptide [D-Penicillamine2,5]enkephalin (DPDPE) has recently acquired special significance with the identification of a saturable uptake system for this analgesic into the CNS. The aim of the present study was to characterize further the entry of [3H]DPDPE into the brain and CSF by means of a bilateral in situ brain perfusion method. Initial experiments revealed a saturable [3H]DPDPE uptake into the brain that followed Michaelis-Menten type kinetics with a K(m) value of 45.5 +/- 27.6 microM, a V(max) value of 51.1 +/- 13.2 pmol x min(-1) x g(-1) and a K(d) value of 0.6 +/- 0.3 microl x min(-1) x g(-1). Uptake of [3H]DPDPE into the CSF could not be inhibited (K(d) = 0.9 +/- 0.1 microl x min(-1) x g(-1)). Entry of [3H]DPDPE into the CNS was not inhibited in the presence of 10 mM 2-aminobicyclo-[2,2,1]-heptane-2-carboxylic acid (BCH) or 50 microM ICI 174,864, which suggests that the saturable mechanism does not involve the large neutral amino acid transporter or binding to opioid receptors. It would also appear that [3H]DPDPE is not in competition with either poly-L-lysine or insulin to enter the CNS. However, both of these substances significantly increased the CNS entry of [3H]DPDPE but not that of the vascular space marker [14C]sucrose, and this may have valuable clinical implications. It is not known at present which saturable uptake mechanism is responsible for the CNS entry of [3H]DPDPE, but overall the results suggest a carrier-mediated transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号