首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In brittle composite materials, failure mechanisms like debonding of the matrix-fiber interface or fiber breakage can result in crack deflection and hence in the improvement of the damage tolerance. More generally it is known that high values of fracture energy dissipation lead to toughening of the material. Our aim is to investigate the influence of material parameters and geometrical aspects of fibers on the fracture energy as well as the crack growth for given load scenarios. Concerning simulations of crack growth the cohesive element method in combination with the Discontinuous Galerkin method provides a framework to model the fracture considering strength, stiffness and failure energy in an integrated manner. Cohesive parameters are directly determined by DFT supercell calculations. We perform studies with prescribed crack paths as well as free crack path simulations. In both cases computational results reveal that fracture energy depends on both the material parameters but also the geometry of the fibers. In particular it is shown that the dissipated energy can be increased by appropriate choices of cohesive parameters of the interface and geometrical aspects of the fiber. In conclusion, our results can help to guide the manufacturing process of materials with a high fracture toughness.  相似文献   

2.
This paper presents a rigorous and exhaustive evaluation of the analytical homogenization models accuracy for the case of randomly distributed and oriented ellipsoidal fibers reinforced composites. Artificial random microstructures were generated using a molecular dynamics (MD) algorithm. Numerical effective properties were computed using a Fast Fourier Transforms (FFT) based technique. The numerical predictions were compared to those of the analytical models for a wide range of phases mechanical properties, fibers volume fractions and aspect ratios. The validation campaign involved a rigorous Representative Volume Element (RVE) determination process and approximately, 66,000 simulations were performed. The results show that the analytical models accuracy is more sensitive to the mechanical properties contrasts than to the fibers volume fraction and aspect ratio. Among all the studied models, Lielens’ model remains the most accurate, especially for high contrasts and volume fractions. For high aspect ratio fibers, Lielens’s model and Beveniste’s interpretation of the Mori–Tanaka model provide similar estimates, especially when predicting the effective shear modulus. In this case, the latter could be an alternative to Lielens’ model, especially for composites where the fibers are not completely stiffer than the matrix. All conclusions of this study apply to both prolate and oblate ellipsoidal fibers.  相似文献   

3.
We demonstrate the biocompatibility of carbon nanotube fibers (CNFs) fabricated from single-wall carbon nanotubes. Produced by a particle-coagulation spinning process, CNFs are "hair-like" conductive microwires, which uniquely combine properties of porous nanostructured scaffolds, high-area electrodes, and permeable microfluidic conduits. We report that CNFs are nontoxic and support the attachment, spreading, and growth of mammalian cells and the extension of processes from neurons in vitro. Our findings suggest that CNF may be employed for an electrical interfacing of nerve cells and external devices.  相似文献   

4.
We use tapered silica fibers to inject laser light into ZnO nanowires with diameters around 250 nm to study their waveguiding properties. We find that high-order waveguide modes are frequently excited and carry significant intensity at the wire surface. Numerical simulations reproduce the experimental observations and indicate a coupling efficiency between silica and ZnO nanowires of 50%. Experimentally, we find an emission angle from the ZnO nanowires of about 90 degrees , which is in agreement with the simulations.  相似文献   

5.
There are a wide variety of short fiber reinforced cement composites. Among these materials are Strain Hardening Cementitious Composites (SHCC) that exhibit strain hardening and multiple cracking in tension. Quantitative material design methods considering the properties of matrix, fiber and their interface should be established. In addition, numerical models to simulate the fracture process including crack width and crack distribution for the material are needed.This paper introduces a numerical model for three-dimensional analysis of SHCC fracture, in which the salient features of the material meso-scale (i.e. matrix, fibers and their interface) are discretized. The fibers are randomly arranged within the specimen models. Load test simulations are conducted and compared with experimental results. It is seen that the proposed model can well simulate the tensile failure of Ultra High Performance-Strain Hardening Cementitious Composites (UHP-SHCC) including strain-hardening behavior and crack patterns. The effects of matrix strength, its probability distribution inside the specimen and fiber distribution on the tensile fracture are numerically investigated. Consideration of the probability distributions of material properties, such as matrix strength, appears to be essential for predicting the fracture process of SHCC.  相似文献   

6.
A general approach to the mechanical behaviour of woven fabrics at the scale of individual fibers is proposed in this paper. In order to simulate the behaviour of samples of woven fabrics, all fibers constituting these samples are taken into account in the model, and particular attention is paid to detecting and modeling of contact-friction interactions occuring within the assembly of fibers. The global problem is set within a large deformation framework, and is solved using an implicit algorithm. The developed methods are first employed to compute the unknown initial configuration of woven structures by reproducing the arrangement of yarns generated by the weaving process. Various loading cases can then be applied in order to identify the mechanical properties of such materials. Numerical results about samples made of nearly 400 fibers are given to show the ability of the method to handle representative examples. Very useful informations at the scale of individual fibers are obtained from these simulations and should help to understand the mechanisms at microscopic scale governing the complex nonlinear behaviour of woven fabrics.  相似文献   

7.
We have carried out 3-dimensional molecular dynamics simulations of a crystal growth technique known as laser heated pedestal growth. Previously, we simulated this technique in 2 dimensions and our current work is an attempt to extend those simulations to the more realistic 3D case. We demonstrate that such 3D simulations are feasible in a study of the influence of the growth speed and the influence of the laser heating on various aspects of the fiber growth. Although much more realistic than the 2D study, the moderate system sizes used in this study and other crude representations of the experimental process still prevent us from making quantitative comparisons with the latter.  相似文献   

8.
Carbon nanotube (CNT) reinforced SiCf/SiC composite was prepared by in situ chemical vapor deposition (CVD) growth of CNTs on SiC fibers then following polymer impregnation pyrolysis (PIP) process. The nature of CNTs and the microstructure of the as prepared CNT-SiCf/SiC composite were investigated. The mechanical properties of the as prepared CNT-SiCf/SiC composite were measured. The results reveal that the in situ CVD growth of CNTs on SiC fibers remarkably promotes the mechanical properties of SiCf/SiC composite. The secondly pull-out of CNTs from matrix during the pull-out of the SiC fibers from matrix consumes the deformation energies, resulting in promotion of the mechanical properties for composite.  相似文献   

9.
Based on the analysis of the RC plant-fiber components, we have presented herein a detailed plant-fiber geometric reconstruction process. To this end, a combination of tools have been used in image analysis and processing in order to derive certain event patterns: statistics to describe the statistical properties and Voronoi partitioning to simulate the cellular pattern of the microstructure. The modeling performed is as interesting as a unique and innovative one, being exportable to computer simulations in order to generate fibers of various shapes and dimensions. Based on the reconstructed morphology, anisotropic elastic properties of the RC plant-fiber are then computed in the second part of this paper.  相似文献   

10.
In the autoclave process, resin flow is a primary mechanics for the removing of excess resin and voids entrapped in the laminate and obtaining a uniform and void free composite part. A numerical method was developed to simulate the resin flow in the laminate and the bleeder, and the effects of ‘bleeder flow’ on the resin flow and fiber compaction were conducted. At the same time, fiber distribution in the cured laminates was investigated by both experiments and simulations for the CF/Epoxy and CF/BMI composites. The data of the experiments and simulations demonstrated that fibers consolidated and reconsolidated in the laminate and it was impacted by the viscosity and gel time of the resin system. Compared to the post study in which only resin flow in the laminate are considered, these results will deepen the understanding of the consolidation process, resin pressure variation and void control during the autoclave process, which is valuable for the study of the performance of composite parts, provided that fiber distribution does affect some properties of composite material.  相似文献   

11.
Mechanical properties of continuously spun fibers of carbon nanotubes   总被引:1,自引:0,他引:1  
Motta M  Li YL  Kinloch I  Windle A 《Nano letters》2005,5(8):1529-1533
We report on the mechanical properties of fibers consisting of pure carbon nanotube fibers directly spun from an aerogel formed during synthesis by chemical vapor deposition. The continuous withdrawal of product from the gas phase imparts a high commercial potential to the process, either for the production of particularly strong fibers or for the economic production of bulk quantities of carbon nanotubes. Tensile tests were performed on fibers produced from the dissociation of three different hydrocarbons, namely, ethanol, ethylene glycol, and hexane, with a range of iron (catalyst) concentrations. The conditions were chosen to lie within the range known to enable satisfactory continuous spinning, the iron concentration being varied within this range. Increasing proportions of single wall nanotubes were found as the iron concentration was decreased, conditions which also produced fibers of best strength and stiffness. The maximum tensile strength obtained was 1.46 GPa (equivalent to 0.70 N/tex assuming a density of 2.1 g/cm(3)). The experiments indicate that significant improvements in the mechanical properties can be accomplished by optimizing the process conditions.  相似文献   

12.
The systematic modification of the surface charge of lignocellulose fibers was performed with a polyelectrolyte layer-by-layer (LbL) nanocoating process to produce negatively and positively charged fibers. The fibers were coated with 20-50 nm thick polymer surface layers which subsequently increased interaction between the fibers during paper formation. The modified fibers were added to standard fibers at varying proportions to produce paper with corresponding variation in properties such as strength and electrical conductivity. Paper strength was doubled by manipulating the surface charge and coating thickness of the LbL-treated pulp fibers. It is demonstrated that the LbL coating process increased the fiber interactions and that these interactions enhanced the paper properties. This process, when applied to a simulated sample of recycle grade of fibers, produce paper with an increase in tear strength as compared with untreated fiber paper. Nanocoating fibers with polythiophene/polyallylamine multilayers produced marginally conductive pulp and paper. Paper electrical conductivity was proportional to the number of the bilayers deposited.  相似文献   

13.
Growing carbon nanotubes (CNT) on the surface of high performance carbon fibers (CF) provides a means to tailor the thermal, electrical and mechanical properties of the fiber–resin interface of a composite. However, many CNT growth processes require pretreatment of the fiber, deposition of an intermediate layer, or harsh growth conditions which can degrade tensile properties and limit the conduction between the fiber and the nanotubes. In this study, high density multi-wall carbon nanotubes were grown directly on two different polyacrylonitrile (PAN)-based carbon fibers (T650 and IM-7) using thermal Chemical Vapor Deposition (CVD). The influence of CVD growth conditions on the single-fiber tensile properties and CNT morphology was investigated. The mechanical properties of the resultant hybrid fibers were shown to depend on the carbon fiber used, the presence of a sizing (coating), the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. The CNT density and alignment morphology was varied with growth temperature and precursor flow rate. Overall, it was concluded that a hybrid fiber with a well-adhered array of dense MWCNTs could be grown on the unsized T650 fiber with no significant degradation in tensile properties.  相似文献   

14.
This paper reviews recent work and presents new results on statistical aspects of the failure of composites consisting of brittle fibers aligned in a brittle matrix. The failure process involves quasi-periodic matrix cracking in planes perpendicular to the fiber, frictional sliding of the fibers in fiber break zones, and fiber bridging of cracks in a load-sharing framework that may vary from global to fairly local. First, we review the overall statistical features of the failure process, and identify certain issues in terms of critical geometric, statistical and mechanical parameters. This leads to two interesting cases, one where the spacing of matrix cracks is small relative to the length scale of load transfer in the fibers, and one where it is larger. Next we consider ‘characteristic’ bundles in the composite which capture essential features of the statistics of the failure process, and develop their distributions for strength in terms of certain characteristic stress and length scales. We then model the composite as a chain arrangement of such bundles both longitudinally and laterally, as the scale of load transfer among fibers in a bundle may be smaller than the full composite cross-section. This scale, though not precisely quantified, depends on such things as the stiffness of the matrix relative to the fibers, the volume fraction of the matrix and the spacing of periodic cracks. We then consider the strength distribution for the composite on the basis of the failure of the weakest characteristic bundle. We also consider issues related to fiber pull-out and the work of fracture as well as the possibility of severe strain localization especially within the bundle triggering overall failure. Substantial reductions in strength are predicted for smaller bundle sizes, but composite reliability is typically very high and the size effect very mild. Finally, we mention limited comparisons with Monte Carlo simulations and experimental results.  相似文献   

15.
The effect of fiber, matrix and interface properties on the in-plane shear response of carbon-fiber reinforced epoxy laminates was studied by means of a combination of experiments and numerical simulations. Two cross-ply laminates with the same epoxy matrix and different carbon fibers (high-strength and high-modulus) were tested in shear until failure according to ASTM standard D7078, and the progressive development of damage was assessed by optical microscopy in samples tested up to different strains. The composite behavior was also simulated through computational micromechanics, which was able to account for the effect of the constituent properties (fiber, matrix and interface) on the macroscopic shear response. The influence of matrix, fiber and interface properties on each region and on the overall composite behavior was assessed from the experimental results and the numerical simulations. After the initial elastic region, the shear behavior presented two different regions, the first one controlled by matrix yielding and the second one by the elastic deformation of the fibers. It was found that in-plane shear behavior of cross-ply laminates was controlled by the matrix yield strength and the interface strength and was independent of the fiber properties.  相似文献   

16.
In the present study, we conducted periodic-cell simulations of the thermomechanical cycle of thermally activated shape memory polymer (SMP)-based composites. The present simulation utilizes a micromechanical model for reproducing the discontinuous fibers and SMP. We analyzed the effect of fiber volume fraction, fiber aspect ratio, and fiber end position on the shape fixity and shape recovery of the composite. The simulated results revealed that fiber elasticity is a key factor for the shape fixity of the composite, while both strain concentration near the fiber ends and fiber elasticity play important roles in the shape recovery properties of the composite.  相似文献   

17.
The present paper developed a three-dimensional (3D) “tension–shear chain” theoretical model to predict the mechanical properties of unidirectional short fiber reinforced composites, and especially to investigate the distribution effect of short fibers. The accuracy of its predictions on effective modulus, strength, failure strain and energy storage capacity of composites with different distributions of fibers are validated by simulations of finite element method (FEM). It is found that besides the volume fraction, shape, and orientation of the reinforcements, the distribution of fibers also plays a significant role in the mechanical properties of unidirectional composites. Two stiffness distribution factors and two strength distribution factors are identified to completely characterize this influence. It is also noted that stairwise staggering (including regular staggering), which is adopted by the nature, could achieve overall excellent performance. The proposed 3D tension–shear chain model may provide guidance to the design of short fiber reinforced composites.  相似文献   

18.
We have combined molecular-dynamics (MD) simulations with mesoscale simulations to elucidate the mechanism and kinetics of grain growth in nanocrystalline palladium with a columnar grain structure. The conventional picture of grain growth assumes that the process is governed by curvature-driven grain-boundary (GB) migration. Our MD simulations demonstrate that, at least in a nanocrystalline material, grain growth can also be triggered by the coordinated rotations of neighboring grains so as to eliminate the common GB between them. Such rotation–coalescence events result in the formation of highly elongated, unstable grains which then grow via the GB migration mechanism. These insights can be incorporated into mesoscale simulations in which, instead of the atoms, the objects that evolve in space and time are discretized GBs, grain junctions and the grain orientations, with a time scale controlled by that associated with grain rotation and GB migration and with a length scale given by the grain size. These mesoscale simulations, with physical insight and input materials parameters obtained by MD simulation, enable the investigation of the topology and long-time grain-growth behavior in a physically more realistic manner than via mesoscale simulations alone.  相似文献   

19.
We present a novel process of immobilization of gold nanorods (GNRs) on a glass surface. We demonstrate that by exploiting monolayer protection of the GNRs, their unusual optical properties can be completely preserved. UV-visible spectroscopy and atomic force microscopy analysis are used to reveal the optical and morphological properties of monolayer protected immobilized lipophilic GNRs, and molecular dynamics simulations are used to elucidate their surface molecule arrangements.  相似文献   

20.
Oxide ceramic matrix composites are currently being developed for aerospace applications such as the exhaust, where the parts are subject to moderately high temperatures (≈?700 °C) and oxidation. These composite materials are normally formed by, among other steps, impregnating a ceramic fabric with a slurry of ceramic particles. This impregnation process can be complex, with voids possibly forming in the fabric depending on the process parameters and material properties. Unwanted voids or macroporosity within the fabric can decrease the mechanical properties of the parts. In order to design an efficient manufacturing process able to impregnate the fabric well, numerical simulations may be used to design the process as well as the slurry. In this context, a tool is created for modeling different processes. Thétis, which solves the Navier-Stokes-Darcy-Brinkman equation using finite volumes, is expanded to take into account capillary pressures on the mesoscale. This formulation allows for more representativity than for Darcy’s law (homogeneous preform) simulations while avoiding the prohibitive simulation times of a full discretization for the composing fibers at the representative elementary volume scale. The resulting tool is first used to investigate the effect of varying the slurry parameters on impregnation evolution. Two different processes, open bath impregnation and wet lay-up, are then studied with emphasis on varying their input parameters (e.g. inlet velocity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号